Как исследовать логарифмическую функцию на монотонность. Исследование функций на монотонность

…Нет ни одной области в математике, которая когда-либо не окажется применимой к явлениям действительного мира …

Н.И. Лобачевский

Цели занятия:

  • Обучающие:
    • Знание – студент знает определение критической (стационарной) точки, признаки возрастания и убывания функции и признаки максимума и минимума функции, алгоритмы нахождения промежутков монотонности и точек экстремума функции.
    • Понимание – студент имеет представление о применение данной темы в экономических процессах.
    • Применение – студент применяет изученный материал при непосредственном нахождении промежутков монотонности и точек экстремума функций.
  • Развивающие
    • Анализ – студент сравнивает ранее известную информацию с новой, понимает необходимость изучения данной темы для дальнейшего роста как специалиста в области экономики и бизнеса.
    • Синтез – студент умеет применять знания в конкретной ситуации, правильно формулировать задачи и излагать мысли.
  • Воспиттельные:
    • Оценка студент выделяет ошибки в рассуждениях, научился отвергать ненужную или неверную информацию, учится критически мыслить.

Вид занятия: ознакомление с новым материалом.

Метод: РКМЧП: лекция с остановками, прием «Корзина», прием «Кластер»

Время: 80 мин.

Оборудование: мультимедийный комплекс (компьютер, проектор).

ХОД ЗАНЯТИЯ

I. Организационная часть (1 мин)

Приветствие. Отметить отсутствующих.

II. Стадия вызова (8 мин)

Прием «Корзина».
На доске в центре изображена корзина.
Цель: Актуализация опыта и предыдущих знаний обучаемых.

Преподаватель: О каких свойствах функции вам уже известно? В течение 1 мин вспомните и запишите в тетради все, что помните и знаете.
Преподаватель: Теперь в течение 2 мин обменяйтесь информацией с товарищем.
Преподаватель: Назовите какое-то одно сведение от каждой пары, не повторяясь.

Преподаватель записывает эти сведения в корзину. (Приложение 1 )

III. Стадия осмысления (63 мин)прием лекция с остановками

Преподаватель: Какие из этих свойств вы не можете определять алгебраическим способом?
Преподаватель: Правильно, сегодня мы научимся находить возрастание и убывание, максимум и минимум функции. Запишите тему нашего занятия. Сейчас вы прочитаете первую часть лекции и запишите в тетради

1-я часть. Исследование функции на возрастание и убывание (монотонность).

Определение. Точка называется критической (стационарной), если она является внутренней точкой области определения и производная в ней равна нулю или не существует.

Признаки возрастания и убывания функции:

Если производная данной функции положительна для всех значений х в интервале (а ; в ), т.е.f"(x ) > 0, то функция в этом интервале возрастает.
Если производная данной функции отрицательна для всех значений х в интервале(а ; в ), т.е.f" (x ) < 0, то функция в этом интервале убывает.

А теперь ответьте на вопросы.

Вопросы к первой части:

1. Как найти область определения следующих функций? (Приложение 2 )
2. Что можно сказать о функции, если отсутствуют критические точки?
3. Как найти стационарные точки, в которых производная не существует?
4. Как определять знаки производной на интервалах?

Сейчас вы прочитаете вторую часть лекции и запишите в тетради.

2-я часть. Исследование функции на экстремум с помощью производной

Признаки максимума и минимума функции:

Если при переходе через стационарную точку х0 производная f "(x ) данной функции меняет знак с « – » на « + », то функция в этой точке х 0 имеет минимум. Если при переходе через стационарную точку х 0 производная f "(x ) данной функции меняет знак с « + » на « – », то функция в этой точке х 0 имеет максимум.

Вопросы ко второй части:

  1. Что вы можете сказать о точках экстремума, если отсутствуют критические точки?
  2. Что вы можете сказать о функции, если все знаки на промежутках одного вида?
  3. Как находить вторую координату точки экстремума?

IV. Практическая часть

Задание 1. Исследовать на возрастание и убывание следующие функции:

Решение. D(f ): х =/= 0.

> 0 при х =/= 0.

Ответ: функция возрастает на (– ; 0) и (0; + ).

2) f (x ) = x 3 – 27x

Решение. D(f ): R.

критические точки

Ответ: функция возрастает на (– ; – 3] и .

Задание 2. Исследовать на максимум и минимум следующие функцию.

Решение. D(f ): х =/= ± 2.

Ответ: экстремумов нет.

Преподаватель: У вас, наверное, возникает вопрос, какое отношение имеет данная тема для будущей нашей профессии? Сегодня у вас в гостях студенты старшего курса. Они расскажут, где применяется данная тема в экономике.

Старшекурсник: Дифференциальное исчисление – широко применяемый для экономического анализа математический аппарат. Важный раздел методов дифференциального исчисления, используемых в экономике – методы предельного анализа, т. е. совокупность приемов исследования изменяющихся величин затрат или результатов при изменениях объемов производства, потребления и т. п. на основе анализа их предельных значений. Предельный показатель (показатели) функции – это ее производная (в случае функции одной переменной) или частные производные (в случае функции нескольких переменных). В экономике часто используются средние величины: средняя производительность труда, средние издержки, средний доход, средняя прибыль и т. д. Но часто требуется узнать, на какую величину вырастет результат, если будут увеличены затраты или наоборот, насколько уменьшится результат, если затраты сократятся. С помощью средних величин ответ на этот вопрос получить невозможно. В подобных задачах требуется определить предел отношения приростов результата и затрат, т. е. найти предельный эффект.

Большое значение имеет такое понятие, как эластичность функции . (Приложение 4 )

Эластичностью функции f (x ) в точке x 0 называют преде

Спрос – это количество товара, востребованное покупателем. Ценовая эластичность спроса E D – это величина, характеризующая то, как спрос реагирует на изменение цены. Если |E D | > 1, то спрос называется эластичным, если |E D | < 1, то неэластичным. В случае E D = 0 спрос называется совершенно неэластичным, т. е. изменение цены не приводит ни к какому изменению спроса. Напротив, если самое малое снижение цены побуждает покупателя увеличить покупки от 0 до предела своих возможностей, говорят, что спрос является совершенно эластичным. В зависимости от текущей эластичности спроса, предприниматель принимает решения о снижении или повышении цен на продукцию.

Пример 1. Пусть цена единицы товара равна С усл.ед., количество единиц реализованного товара равно V. Доход от реализации товара L = CV. Предельный доход равен L "(V).

Функция спроса С = 8 – V. Тогда L = (8 – V)V = 8V – V ‘. При этом С > 0,V > 0, 0 < V < 8.

Решение.

Спрос эластичен при | Еc(V) | >1, т.е. | 1 – 8/V | >1
Решение данного неравенства V Є (0; 4), т.е.
спрос эластичен при V Є (0; 4). На этом интервале L"(V) = (8V – V 2) ‘ = 8 – 2V >0, т.е. доход предприятия растет при снижении цены и продаже дополнительного товара.
Спрос неэластичен при | 1 – 8/V | <1 при V Є (4; 8).
На этом интервале L"(V) = (8V – V 2) ‘ = 8 – 2V < 0.
Следовательно, в случае, когда спрос неэластичен, увеличение объема продажи товара за счет снижения цены приводит к уменьшению дохода.

В экономике очень часто требуется найти наилучшее или оптимальное значение показателя : наивысшую производительность труда, максимальную прибыль, максимальный выпуск, минимальные издержки и т. д. Каждый показатель представляет собой функцию от одного или нескольких аргументов. Таким образом, нахождение оптимального значения показателя сводится к нахождению экстремума функции.

2. Максимизация прибыли. (Приложение 5 )

Пусть L = L(V) – функция дохода, получаемое от реализации V единиц товара;
С = С(V) – функция затрат на производство V единиц товара;
П = П(V) – функция прибыли.
Тогда очевидно П(V) = L(V) – С(V).

Для нахождения максимальной прибыли:

П"(V) = L"(V) – С"(V).
П"(V) = 0 при L"(V) = С"(V), т.е. предельный доход равен предельным издержкам. Именно это утверждается в микроэкономике: «Чтобы максимизировать прибыль, нужно, чтобы предельный доход равнялся предельным издержкам».

Пример 2.

Пусть L(V) = 594V – V 2
С(V) = 2V3 – 7V 2

Решение.

П(V) = 594V – V 2 – (2V 3 – 7V 2) = – 2V 3 + 6V 2 + 594V
П"(V) = – 6V 2 + 12V + 594 = – 6(V 2 – 2V – 99) = – 6(V – 11)(V + 9)
П"(V) = 0.V = – 9, V = 11 – критические точки.

Ответ: П max (11) = 5929

Максимизация дохода при дополнительном налогообложении предприятия. (Приложение 6 )Пусть: V – количество единиц выпускаемой продукции;

L(V) – доход предприятия; C(V) – затраты предприятия; П(V) = L(V) – C(V) – прибыль предприятия. Принято решение: ввести дополнительный налог r на каждую единицу продукции. Каким должен быть налог, чтобы доход R = rV 1 , полученный от дополнительного налога, был максимальным? Здесь V 1 количество единиц продукции, выпускаемой после введения налога. Затраты предприятия после введения налога С 1 = C(V) + rV.
Прибыль предприятия после введения налога П(V) = L(V) – С1(V) = L(V) – C(V) – rV.Приложение 3 )

VI. Задание на дом (1 мин.)

  1. Исследовать на монотонность функцию f (x ) = 2x 2 – x.
  2. Исследовать на экстремум функцию f (x ) = – x 3 + 3x + 2.
  3. Издержки производства некоторой продукции определяется функцией 5х 2 + 80х , где х – число единиц произведенной за месяц продукции. Эта продукция продается по цене 280 руб. за изделие. Сколько изделий нужно произвести и продать, чтобы прибыль была максимальной.

VII. Итоги занятия (1 мин.)

Объявить оценки с комментариями

Возрастание, убывание и экстремумы функции

Нахождение интервалов возрастания, убывания и экстремумов функции является как самостоятельной задачей, так и важнейшей частью других заданий, в частности, полного исследования функции . Начальные сведения о возрастании, убывании и экстремумах функции даны в теоретической главе о производной , которую я настоятельно рекомендую к предварительному изучению (либо повторению) – ещё и по той причине, что нижеследующий материал базируется на самой сути производной, являясь гармоничным продолжением указанной статьи. Хотя, если времени в обрез, то возможна и чисто формальная отработка примеров сегодняшнего урока.

А сегодня в воздухе витает дух редкого единодушия, и я прямо чувствую, что все присутствующие горят желанием научиться исследовать функцию с помощью производной . Поэтому на экранах ваших мониторов незамедлительно появляется разумная добрая вечная терминология.

Зачем? Одна из причин самая что ни на есть практическая: чтобы было понятно, что от вас вообще требуется в той или иной задаче !

Монотонность функции. Точки экстремума и экстремумы функции

Рассмотрим некоторую функцию . Упрощённо полагаем, что она непрерывна на всей числовой прямой:

На всякий случай сразу избавимся от возможных иллюзий, особенно это касается тех читателей, кто недавно ознакомился с интервалами знакопостоянства функции . Сейчас нас НЕ ИНТЕРЕСУЕТ , как расположен график функции относительно оси (выше, ниже, где пересекает ось). Для убедительности мысленно сотрите оси и оставьте один график. Потому что интерес именно в нём.

Функция возрастает на интервале, если для любых двух точек этого интервала, связанных отношением , справедливо неравенство . То есть, бОльшему значению аргумента соответствует бОльшее значение функции, и её график идёт «снизу вверх». Демонстрационная функция растёт на интервале .

Аналогично, функция убывает на интервале, если для любых двух точек данного интервала, таких, что , справедливо неравенство . То есть, бОльшему значению аргумента соответствует мЕньшее значение функции, и её график идёт «сверху вниз». Наша функция убывает на интервалах .

Если функция возрастает или убывает на интервале, то её называют строго монотонной на данном интервале. Что такое монотонность? Понимайте в буквальном смысле – однообразие.

Также можно определить неубывающую функцию (смягчённое условие в первом определении) и невозрастающую функцию (смягчённое условие во 2-м определении). Неубывающую или невозрастающую функцию на интервале называют монотонной функцией на данном интервале (строгая монотонность – частный случай «просто» монотонности) .

Теория рассматривает и другие подходы к определению возрастания/убывания функции, в том числе на полуинтервалах, отрезках, но чтобы не выливать на вашу голову масло-масло-масляное, договоримся оперировать открытыми интервалами с категоричными определениями – это чётче, и для решения многих практических задач вполне достаточно.

Таким образом, в моих статьях за формулировкой «монотонность функции» почти всегда будут скрываться интервалы строгой монотонности (строгого возрастания или строгого убывания функции).

Окрестность точки. Слова, после которых студенты разбегаются, кто куда может, и в ужасе прячутся по углам. …Хотя после поста Пределы по Коши уже, наверное, не прячутся, а лишь слегка вздрагивают =) Не беспокойтесь, сейчас не будет доказательств теорем математического анализа – окрестности мне потребовались, чтобы строже сформулировать определения точек экстремума . Вспоминаем:

Окрестностью точки называют интервал, который содержит данную точку, при этом для удобства интервал часто полагают симметричным. Например, точка и её стандартная - окрестность:

Собственно, определения:

Точка называется точкой строгого максимума , если существует её -окрестность, для всех значений которой за исключением самой точки выполнено неравенство . В нашем конкретном примере это точка .

Точка называется точкой строгого минимума , если существует её -окрестность, для всех значений которой за исключением самой точки выполнено неравенство . На чертеже – точка «а».

Примечание : требование симметричности окрестности вовсе не обязательно. Кроме того, важен сам факт существования окрестности (хоть малюсенькой, хоть микроскопической), удовлетворяющей указанным условиям

Точки называют точками строго экстремума или просто точками экстремума функции. То есть это обобщенный термин точек максимума и точек минимума.

Как понимать слово «экстремум»? Да так же непосредственно, как и монотонность. Экстремальные точки американских горок.

Как и в случае с монотонностью, в теории имеют место и даже больше распространены нестрогие постулаты (под которые, естественно, подпадают рассмотренные строгие случаи!) :

Точка называется точкой максимума , если существует её окрестность, такая, что для всех
Точка называется точкой минимума , если существует её окрестность, такая, что для всех значений данной окрестности выполнено неравенство .

Заметьте, что согласно последним двум определениям, любая точка функции-константы (либо «ровного участка» какой-нибудь функции) считается как точкой максимума, так и точкой минимума! Функция , к слову, одновременно является и невозрастающей и неубывающей, то есть монотонной. Однако оставим сии рассуждения теоретикам, поскольку на практике мы почти всегда созерцаем традиционные «холмы» и «впадины» (см. чертёж) с уникальным «царём горы» или «принцессой болота» . Как разновидность, встречается остриё , направленное вверх либо вниз, например, минимум функции в точке .

Да, кстати, о королевских особах:
– значение называют максимумом функции;
– значение называют минимумом функции.

Общее название – экстремумы функции.

Пожалуйста, будьте аккуратны в словах!

Точки экстремума – это «иксовые» значения.
Экстремумы – «игрековые» значения.

! Примечание : иногда перечисленными терминами называют точки «икс-игрек», лежащие непосредственно на САМОМ ГРАФИКЕ функции.

Сколько может быть экстремумов у функции?

Ни одного, 1, 2, 3, … и т.д. до бесконечности. Например, у синуса бесконечно много минимумов и максимумов.

ВАЖНО! Термин «максимум функции» не тождественен термину «максимальное значение функции». Легко заметить, что значение максимально лишь в локальной окрестности, а слева вверху есть и «покруче товарищи». Аналогично, «минимум функции» – не то же самое, что «минимальное значение функции», и на чертеже мы видим, что значение минимально только на определённом участке. В этой связи точки экстремума также называют точками локального экстремума , а экстремумы – локальными экстремумами . Ходят-бродят неподалёку и глобальные собратья. Так, любая парабола имеет в своей вершине глобальный минимум или глобальный максимум . Далее я не буду различать типы экстремумов, и пояснение озвучено больше в общеобразовательных целях – добавочные прилагательные «локальный»/«глобальный» не должны заставать врасплох.

Подытожим наш небольшой экскурс в теорию контрольным выстрелом: что подразумевает задание «найдите промежутки монотонности и точки экстремума функции»?

Формулировка побуждает найти:

– интервалы возрастания/убывания функции (намного реже фигурирует неубывание, невозрастание);

– точки максимума и/или точки минимума (если таковые существуют). Ну и от незачёта подальше лучше найти сами минимумы/максимумы;-)

Как всё это определить? С помощью производной функции!

Как найти интервалы возрастания, убывания,
точки экстремума и экстремумы функции?

Многие правила, по сути, уже известны и понятны из урока о смысле производной .

Производная тангенса несёт бодрую весть о том, что функция возрастает на всей области определения .

С котангенсом и его производной ситуация ровно противоположная.

Арксинус на интервале растёт – производная здесь положительна: .
При функция определена, но не дифференцируема. Однако в критической точке существует правосторонняя производная и правостороння касательная, а на другом краю – их левосторонние визави.

Думаю, вам не составит особого труда провести похожие рассуждения для арккосинуса и его производной.

Все перечисленные случаи, многие из которых представляют собой табличные производные , напоминаю, следуют непосредственно из определения производной .

Зачем исследовать функцию с помощью производной?

Чтобы лучше узнать, как выглядит график этой функции : где он идёт «снизу вверх», где «сверху вниз», где достигает минимумов максимумов (если вообще достигает). Не все функции такие простые – в большинстве случаев у нас вообще нет ни малейшего представления о графике той или иной функции.

Настала пора перейти к более содержательным примерам и рассмотреть алгоритм нахождения интервалов монотонности и экстремумов функции :

Пример 1

Найти интервалы возрастания/убывания и экстремумы функции

Решение :

1) На первом шаге нужно найти область определения функции , а также взять на заметку точки разрыва (если они существуют). В данном случае функция непрерывна на всей числовой прямой, и данное действие в известной степени формально. Но в ряде случаев здесь разгораются нешуточные страсти, поэтому отнесёмся к абзацу без пренебрежения.

2) Второй пункт алгоритма обусловлен

необходимым условием экстремума:

Если в точке есть экстремум, то либо значения не существует .

Смущает концовка? Экстремум функции «модуль икс».

Условие необходимо, но не достаточно , и обратное утверждение справедливо далеко не всегда. Так, из равенства ещё не следует, что функция достигает максимума или минимума в точке . Классический пример уже засветился выше – это кубическая парабола и её критическая точка .

Но как бы там ни было, необходимое условие экстремума диктует надобность в отыскании подозрительных точек. Для этого следует найти производную и решить уравнение :

В начале первой статьи о графиках функции я рассказывал, как быстро построить параболу на примере : «…берём первую производную и приравниваем ее к нулю: …Итак, решение нашего уравнения: – именно в этой точке и находится вершина параболы…». Теперь, думаю, всем понятно, почему вершина параболы находится именно в этой точке =) Вообще, следовало бы начать с похожего примера и здесь, но он уж слишком прост (даже для чайника). К тому же, аналог есть в самом конце урока о производной функции . Поэтому повысим степень:

Пример 2

Найти промежутки монотонности и экстремумы функции

Это пример для самостоятельного решения. Полное решение и примерный чистовой образец оформления задачи в конце урока.

Наступил долгожданный момент встречи с дробно-рациональными функциями:

Пример 3

Исследовать функцию с помощью первой производной

Обратите внимание, как вариативно можно переформулировать фактически одно и то же задание.

Решение :

1) Функция терпит бесконечные разрывы в точках .

2) Детектируем критические точки. Найдём первую производную и приравняем её к нулю:

Решим уравнение . Дробь равна нулю, когда её числитель равен нулю:

Таким образом, получаем три критические точки:

3) Откладываем на числовой прямой ВСЕ обнаруженные точки и методом интервалов определяем знаки ПРОИЗВОДНОЙ:

Напоминаю, что необходимо взять какую-нибудь точку интервала, вычислить в ней значение производной и определить её знак. Выгоднее даже не считать, а «прикинуть» устно. Возьмём, например, точку , принадлежащую интервалу , и выполним подстановку: .

Два «плюса» и один «минус» дают «минус», поэтому , а значит, производная отрицательна и на всём интервале .

Действие, как вы понимаете, нужно провести для каждого из шести интервалов. Кстати, обратите внимание, что множитель числителя и знаменатель строго положительны для любой точки любого интервала, что существенно облегчает задачу.

Итак, производная сообщила нам, что САМА ФУНКЦИЯ возрастает на и убывает на . Однотипные интервалы удобно скреплять значком объединения .

В точке функция достигает максимума:
В точке функция достигает минимума:

Подумайте, почему можно заново не пересчитывать второе значение;-)

При переходе через точку производная не меняет знак, поэтому у функции там НЕТ ЭКСТРЕМУМА – она как убывала, так и осталась убывающей.

! Повторим важный момент : точки не считаются критическими – в них функция не определена . Соответственно, здесь экстремумов не может быть в принципе (даже если производная меняет знак).

Ответ : функция возрастает на и убывает на В точке достигается максимум функции: , а в точке – минимум: .

Знание интервалов монотонности и экстремумов вкупе с установленными асимптотами даёт уже очень хорошее представление о внешнем виде графика функции. Человек среднего уровня подготовки способен устно определить, что у графика функции есть две вертикальные асимптоты и наклонная асимптота . Вот наш герой:

Постарайтесь ещё раз соотнести результаты исследования с графиком данной функции.
В критической точке экстремума нет, но существует перегиб графика (что, как правило, и бывает в похожих случаях).

Пример 4

Найти экстремумы функции

Пример 5

Найти интервалы монотонности, максимумы и минимумы функции

…прямо какой-то Праздник «икса в кубе» сегодня получается....
Тааак, кто там на галёрке предложил за это выпить? =)

В каждой задаче есть свои содержательные нюансы и технические тонкости, которые закомментированы в конце урока.

В данном пункте описаны основные условия исследования функций на монотонность и экстремум с помощью производной. Эти условия разделяются на необходимые и достаточные.

Теорема 3 (условие постоянства функции) . Для того чтобы в интервале (a ; b ) функция f (x ) была постоянной, необходимо и достаточно, чтобы ее производная равнялась нулю для всех точек x из (a ; b ).

1). Доказательство необходимости. Пусть функция f (x ) постоянна на (a ; b ), тогда, по первому правилу дифференцирования, ее производная равна 0. Это означает, что необходимость доказана.

2). Доказательство достаточности. Пусть f" (х ) = 0 для всех точек x из (a ; b ). Берутся произвольные точки x 1 , x 2 из (a ; b ), и пусть для определенности x 1 < x 2 . К промежутку [x 1 ; x 2 ] применяется теорема Лагранжа: существует точка x 0 из (x 1 ; x 2) такая, что f (x 2) - f (x 1) = (x 2 - x 1)×f ¢(x 0). Но, по условию, f" (x 0) = 0, следовательно, f (x 2) = f (x 1), т.е. функция f (x ) постоянна на (a ; b ). Это означает, что достаточность доказана. Теорема доказана.

Теорема 4 (необходимое условие монотонности функции) . Пусть в интервале (a ; b ) функция f (x ) дифференцируема. Тогда :

а ) если f (x ) возрастает, то ее производная в (a ; b ) не отрицательна , т.е. f ¢(x ) ³ 0;

б ) если f (x ) убывает, то ее производная в (a ; b ) не положительна , т.е. f ¢(x ) £ 0.


Доказательство. а). Пусть функция f (x ) возрастает в (a ; b ), т.е. для любых x 1 , x 2 из (a ; b ) выполняется соотношение: x 1 < x 2 ® f (x 1) < f (x 2). Тогда, для указанных точек x 1 , x 2 следующее отношение положительное:

Отсюда следует, что производная f ¢(x 1) ³ 0. Утверждение а б ).

Теорема 5 (достаточное условие монотонности функции). Пусть в интервале (a ; b ) функция f (x ) дифференцируема. Тогда :

а ) если f ¢(x ) > 0 на (a ; b ), то f (x ) возрастает на (a ; b );

б) если f ¢(x ) < 0 на (a ; b ), то f (x ) убывает на (a ; b ).

Доказательство. а). Пусть f ¢(x ) > 0 на (a ; b ) и точки x 1 , x 2 из (a ; b ) такие, что x 1 < x 2 . По теореме Лагранжа, существует точка x 0 из (x 1 ; x 2) такая, что f (x 2) - f (x 1) = (x 2 - x 1)×f ¢(x 0). Здесь правая часть равенства положительная, поэтому f (x 2) - f (x 1) > 0, т.е. f (x 2) > f (x 1) . Это означает, что f (x ) возрастает на (a ; b ). Утверждение а ) доказано. Аналогично доказывается утверждение б ).

Пример 9. Функция у = х 3 всюду возрастает, так как с ростом значений х возрастают кубы этих значений. Производная этой функции у ¢= 3х 2 всюду неотрицательная, т.е. выполняется необходимое условие монотонности.

Пример 10. Найти промежутки возрастания и убывания функции у = 0,25х 4 - 0,5х 2 .

Решение. Находится производная данной функции у ¢ = х 3 - х , и строятся промежутки, в которых х 3 - х положительная или отрицательная. Для этого сначала находятся критические точки, в которых у ¢ = 0: х 3 - х = 0 ® х (х + 1)(х -1) = 0 ® х 1 = 0, х 2 = -1 х 3 = 1. Эти точки разбивают числовую ось на 4 промежутка:


- + - + X

-¥ -2 -1 0 1 2 3 +¥

Черт.36.

В общем случае, для определения знаков производной берут по одной точке в каждом промежутке и вычисляют значения производной в этих точках. Но иногда достаточно взять только одну точку в крайнем правом промежутке, определить знак производной в этой точке, а в остальных промежутках знаки чередовать. В данном примере пусть х = 2, тогда у ¢(2) = 2 3 – 2 = 6 > 0. В правом интервале ставится знак +, а затем знаки чередуются. Получено у ¢ > 0 на промежутках (-1; 0) и (1; +¥), следовательно, исследуемая функция на этих промежутках возрастает. Далее, у ¢< 0 на (- ¥; -1) и (0; 1), следовательно, исследуемая функция на этих промежутках убывает. Ниже на чертеже 37 построен график этой функции.

Определение 3 . 1). Точка х о называется точкой максимума функции f (x ), если существует интервал (a ; b ), содержащий х о, в котором значение f (x о) наибольшее, т.е. f (x о) > f (x ) для всех х из (a ; b ).

2). Точка х о называется точкой минимума функции f (x ), если существует интервал (a ; b ), содержащий х о, в котором значение f (x о) наименьшее, т.е. f (x о) < f (x ) для всех х из (a ; b ). Точки максимума и минимума называются точками экстремума.

Теорема 6 (необходимое условие экстремума функции ). Если х о является точкой экстремума функции f (x ) и существует производная

f ¢(x 0), то f "(x 0) = 0.

Доказательство аналогично доказательству теоремы Ролля.

Точка x 0 , в которой f ¢(x 0) = 0 или f ¢(x 0) не существует, называется критической точкой функции f (x ). Говорят, что критические точки подозрительны на экстремум , т.е. они могут быть точками максимума или минимума, но могут и не быть ими.

Теорема 7 (достаточное условие экстремума функции) . Пусть f (x ) дифференцируема в некотором интервале, содержащем критическую точку х о ( кроме, быть может, самой точки х о). Тогда :

а ) если при переходе через х о слева направо производная f ¢(x ) меняет знак с + на - , то х о является точкой максимума функции f (x );

б ) если при переходе через х о слева направо производная f ¢(x ) меняет знак с - на +, то х о является точкой минимума функции f (x ).

Доказательство. Пусть выполнены все условия пункта а ). Возьмем точку х (из указанного интервала) такую, что х < х о, и применим теорему Лагранжа к интервалу (х ; х о). Получим: f (x 0) - f (x ) = (x 0 - x )×f ¢(x 1), где x 1 – некоторая точка из (х ; х о). По условию, f ¢(x 1) > 0 и (x 0 - x ) > 0, поэтому f (x 0) > f (x ) . Аналогично доказывается, что для любой точки х > х о тоже f (x 0) > f (x ). Из этих утверждений следует, что – точка максимума, утверждение а ) доказано. Аналогично доказывается утверждение б ).

Пример 11. В примере 9 показано, что функция у = х 3 всюду возрастает, следовательно, она не имеет экстремумов. Действительно, ее производная у" = 3х 2 равна нулю только при х о = 0, т.е. в этой точке выполняется необходимое условие экстремума функции. Но при переходе через 0 ее производная у" = 3х 2 не меняет знак, поэтому х о = 0 не является точкой экстремума этой функции.

Пример 12. В примере 10 показано, что функция у = 0,25х 4 - 0,5х 2 имеет критические точки х 1 = 0, х 2 = -1, х 3 = 1. На чертеже 34 указано, что при переходе через эти точки ее производная меняет знак, следовательно, х 1 , х 2 , х 3 - точки экстремума, при этом х 1 = 0 - точка максимума, а х 2 = -1, х 3 = 1 - точки минимума.

Далее, делается чертеж к этому примеру. Функция f (x ) = 0,25х 4 - 0,5х 2 исследуется на четность : f (-x ) = 0,25(-х ) 4 - 0,5(-х ) 2 = f (x ), следовательно, эта функция четная, и ее график симметричен относительно оси ОY . Строятся найденные выше точки графика и некоторые вспомогательные точки, лежащие на графике, и они соединяются плавной линией.


y = 0,25x 4 - 0,5x 2 0,5 -0,11

1 0 max 1 х Ö `1/3 –0,14 A B

Черт.37.

Теорема 8 (второе достаточное условие экстремума ). Пусть х 0 – критическая точка функции f (x ), и существует производная второго порядка f ¢¢(х 0). Тогда :

a ) если f ¢¢( х 0) < 0, то х 0 – точка максимума функции f (x );

б) если f ¢¢(х 0) > 0, то х 0 - точка минимума функции f (x ).

Доказательство этой теоремы не рассматривается (см.).

Пример 13. Исследовать на экстремум функцию y = 2x 2 - x 4 .

Решение. Находится производная y ¢ и критические точки, в которых

y ¢= 9: y ¢= 4x - 4x 3 ; 4x - 4x 3 = 0 ® x 1 = 0, x 2 = 1, x 3 = -1 - критические точки. Находится производная второго порядка y ¢¢ и вычисляются ее значения в критических точках: y ¢¢= 4 –12х 2 ; y ¢¢(0) = 4, y ¢¢(1) = –8, y ¢¢(-1) = –8. Так как y ¢¢(0) > 0, то x 1 = 0 - точка минимума; и так как y ¢¢(1) < 0, y ¢¢(-1) < 0, то x 2 = 1, x 3 = -1 - точки максимума данной функции.

Абсолютными экстремумами функции на сегменте [a ; b ] называются наибольшее и наименьшее значения f (x ) на [a ; b ]. Эти экстремумы достигаются или в критических точках функции f (x ), или на концах сегмента [a ; b ].

Пример 14. Определить наибольшее и наименьшее значения функции у = х 2 ×lnx на промежутке .

Решение. Находится производная данной функции и ее критические точки: у ¢ = 2x ×lnx + x 2 ×(1/x ) = x ×(2lnx +1); x ×(2×lnx +1) = 0 ® а) х 1 = 0; б) 2×lnx + 1 = 0 ® ln x = -0,5 ® х 2 = e - 0,5 = 1/Ö `e » 0,607. Критическая точка х 1 = 0 не входит в рассматриваемый промежуток , поэтому находятся значения функции в точке х 2 = e - 0,5 и на концах а = 0,5, b = e . у (e -0,5) = (e - 0,5) 2 ×ln (e - 0,5) = e - 1 (-0,5) = -0,5/e » -0,184; у (0,5) = 0,25×ln 0,5 » 0,25(-0,693) = -0,17325; у (e ) = e 2 ×lne = e 2 ×1» 7,389. Выбираются наибольшее и наименьшее среди найденных значений: наибольшее значение »7,389 в при х = е , наименьшее значение » -0,184 в при х = e - 0,5 .

Задачи на экстремум.

В таких задачах рассматриваются две переменные величины х и у , и требуется найти такое значение х , при котором значение у является наибольшим или наименьшим. Решение такой задачи содержит следующие шаги:

1) выбирается экстремальная величина y , максимум или минимум которой необходимо найти;

2) выбирается переменная х , и y выражается через х ;

3) вычисляется производная у " и находятся критические точки, в которых у " равна 0 или не существует;

4) исследуются критические точки на экстремум;

5) рассматриваются значения y на концах, и вычисляется требуемая в задаче величина.

Пример 15. Экспериментально установлено, что расход бензина

у (л) на 100 км пути автомобилем ГАЗ-69 в зависимости от скорости х (км/ч) описывается функцией у = 18 - 0,3х + 0,003х 2 . Определить наиболее экономичную скорость.

Решение. Здесь первые два шага 1) и 2) выполнены в условии задачи. Поэтому сразу вычисляется производная: у" = -0,3 +0,006х , и находится критическая точка: -0,3 + 0,006х = 0 ® х о = 50 . Теперь, прменяется второе достаточное условие экстремума: у"" = 0,006 > 0 в любой точке, следовательно, х о = 50 - точка минимума. Вывод: наиболее экономичная скорость равна 50 км/ч, при этом расход бензина равен 18 - 0,3×50 + 0,003×50 2 = 10,5 л. на 100 км.

Пример 16. Из квадратного листа картона со стороной 60 см вырезают по углам одинаковые квадраты и из оставшейся части склеивают прямоугольную коробку. Какова должна быть сторона вырезаемого квадрата, чтобы объем коробки был наибольшим .

Решение. Осуществляются указанные выше шаги решения задачи.

1). По условию объем коробки должен быть наибольшим, поэтому пусть y - объем коробки.

2). За х (см) берется сторона вырезаемого квадрата. Тогда высота коробки будет равна х и основанием коробки будет квадрат со стороной

(60 – 2х ), его площадь равна (60 – 2х ) 2 . Следовательно, объем коробки равен y = х (60 – 2х ) 2 = 3600х - 240х 2 + 4х 3 .

3). Вычисляется производная и находятся критические точки: у" = 3600 - 480х + 12х 2 ; х 2 - 40х +300 = 0 ® х 1 =10, х 2 =30 - критические точки.

4). Производная 2-го порядка равна у"" = - 480 + 24х и у"" (10) = -240, у"" (30) = 240. По теореме 8, х 1 =10 - точка максимума и y max = 400 (см 3).

5). Кроме того, х может принять крайнее значение х 3 = 0. Но у (0) = 0 - это меньше чем y max .

Ответ: сторона вырезаемого квадрата равна 10 см.


©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-08-20

Цели урока:

Образовательные:

  • повторить описание свойств кусочной функции по графику;
  • вывести и усвоить формальные определения возрастания и убывания функции;
  • научить доказывать монотонность функции на области определения.

Воспитательные:

  • воспитание познавательного интереса;
  • воспитание культуры общения;
  • воспитание ответственности за общее дело.

Развивающие:

  • развитие мышления и математической речи через формулировку общих выводов и обобщений.

Ход урока

Эпиграф к уроку:

"Мало иметь хороший ум, главное хорошо его применять"
Р. Декарт.

Домашнее задание к этому уроку: выясните, людям каких профессий по роду своей деятельности приходится читать графики.

Ответы: - кардиолог (кардиограмма)

Экономист (график динамики роста цен, роста стоимости нефти, рост курса $)

Метеоролог (график изменения температуры за год)

Сейсмолог (график колебания активности вулкана, сейсмоактивность данной местности).

Давайте посмотрим, насколько мы владеем этой культурой.

Аукцион "Чтение графика"

Последний ученик, правильно назвавший свойство функции, получает "5"

Дополнительный аукцион:

Кусочек графика какой функции изображен на чертеже?

Сегодня на уроке мы подробно рассмотрим только одно свойство функции - монотонность.

Подберите к прилагательному "монотонный" существительное. О чем говорят "монотонный"?

Движение.

Монотонный - значит какой? Одинаковый, повторяющийся.

С каким свойством функции можно связать словосочетание - монотонное движение? Движение куда?

Итак: монотонность - это возрастание и убывание функции.

В тетради: число, тема урока "Исследование функции на монотонность".

Давайте начнем с того, что мы уже знаем - с графика. Начертите в каждом столбике систему координат и изобразите график произвольной функции, обладающей указанным свойством на всей области определения.

В тетради таблица:

Отложим в сторону тетради. Для дальнейшего изучения свойства, давайте еще раз убедимся, что мы все хорошо понимаем о чем идет речь на уроке. Собираем лото.

Инструкция: На каждой парте таблица и набор карточек.

Работаем в парах. Карточек больше, чем необходимо. Будьте внимательны. Лото собирайте на тетрадке, чтобы потом перевернув, мы прочитали закодированную фразу, правильность которой зависит от слаженной работы каждой пары.

Набор карточек:

После того как каждая пара сложит лото и перевернет таблицу, из получившихся слов получается фраза:

"От живого созерцания к абстрактному мышлению, от него к практике - таков путь познания истины" Ф. Энгельс.

На боковой доске:

Нам сегодня предстоит подняться по этой лесенке, чтобы постигнуть лишь малую крупицу истины знаний, которые накопило человечество на своем пути развития.

Как вы думаете, на какой ступеньке мы находимся? Созерцание, т.е. рассматриваем графики. Продолжаем работу в тетради, в первом столбике таблицы.

Зафиксируйте х 1 , найдите по графику соответствующее у 1 , зафиксируйте х 2 - найдите у 2. Сравните х 1 и х 2 (х 1 < х 2). Что происходит со значением х?

Сравните у 1 и у 2 (у 1 > у 2). Что происходит со значением у?

Вывод: Большему значению х соответствует меньшее значение у. Это и есть определение убывающей функции. Запишите его в таблицу.

Самостоятельная работа.

1 вариант. Проделайте те же операции во втором столбике таблицы.

2 вариант. Заполните третий столбик.

Проверка по доске и в парах обмен результатами.

Итог работы.

Если мы знаем определение, то график для установления вида монотонности нам не нужен. А это значит, что мы поднялись на вторую ступеньку по лестнице познания.

Осталось применить свои знания на практике.

V. Задачник стр.194, № 4, 5 .Один ученик у доски.

Дано: у = 2х - 5

Доказать: у 1 < у 2

Доказательство:

х 1 < х 2 |· 2

2х 1 < 2х 2 | + (- 5)

2х 1 - 5 < 2х 2 - 5

у 1 < у 2 > функция у = 2х - 5 - возрастающая.

Дано: у = 7 - 13х

Доказать: у 1 > у 2

Доказательство: аналогично

Как называются функции, которые мы исследовали? От чего зависит вид монотонности линейной функции? Запишите вывод в таблицу. Используя этот вывод, выполним устно № 6. .

№ 8(а,б) . по вариантам, оформить в тетради по образцу.

Проверка вывода: как называется функция? Какой общей формулой задается функция? От чего зависит вид монотонности? Запишите в таблицу.

Как вы думаете, будет ли меняться вид монотонности, если смещать график вдоль оси Ох или Оу?

№ 8(в,г) устно.

Вспомните графики известных функций. Какая из них одинаково ведет себя на всей области определения? у = . Запишите в таблицу.

V. Наш урок подходит к концу. Закройте тетради. Откройте дневники.

Домашнее задание:

на "3" - выучить определения 10 ., 32 № 1,2;

на "4" + 32 № 11.,

на "5" + задание на карточке.

Построй графики - получишь рисунок. .

"собачка"

х = 8, - 19 у - 3;

у = - х - 11, 0 х 8;

х = 0, - 19 у - 11;

у = - х - 19, - 14 х 0;

х = - 14, - 5 у 1;

у = - х -13, - 14 х - 8;

х = - 8, - 11 у - 5;

у = х - 3, - 8 х 0;

у = - 3, 0 х 8;

у = - 0,6х + 1,2, - 2 х 8;

у = 1, 7 х 10;

у = - 4х - 42,8, 8 х 10;

у = , 5 х 8;

у = - 0,4х + 8, 0 х 2;

у = - 4х + 8, 0 х 2.

"парусник"

Экстремумы и выпуклость.

Асимптоты графика функции

Определение. Критической точкой функции у = f (х ) называется точка в которой производная равна нулю или не существует.

Теорема. Если в промежутке (а; b) производная положительна/отрицательна, то в этом промежутке функция возрастает/убывает.

Теорема. Если при переходе через критическую точку производная меняет знак с «+» на «−» (с «−» на «+»), то − точка максимума (минимума) функции

Определение. Функция называется выпуклой вверх(вниз) в промежутке (а; b), если в этом промежутке точки графика лежат под (над) касательными, построенными в этих точках. Точкой перегиба называется точка графика функции, которая делит его на части с разными направлениями выпуклости.

Пример 2.3.

Исследовать функцию на монотонность и экстремумы, выпуклость.

1. Исследуем функцию на монотонность и экстремумы.

Сделаем рисунок (рис. 2.1 ).

y′′
x
+
y
вып. вниз
вып. вверх
вып. вниз

Рис. 2.2. Исследование функции на выпуклость

Вычислим ординаты точек перегиба графика:

Координаты точек перегиба: (0; 0), (1; −1).

2.32. Исследовать функцию на монотонность и экстремумы:

1) 2) 3)

4) 5) 6)

2.33. Найти наименьшее и наибольшее значенияфункции:

1) на промежутке ;

2) на промежутке [−1; 1];

3) на промежутке [−4; 4];

4) на промежутке [−2; 1].

2.34. Издержки производства С (у. е.) зависят от объема выпускаемой продукции х (ед.): Найти наибольшие издержки производства, если х изменяется на промежутке . Найти значение х , при котором прибыль будет максимальной, если выручка от реализации единицы продукции равна 15 у. е.

2.35. Требуется выделить прямоугольную площадку земли в 512 м 2 , огородить ее и разделить забором на три равные части параллельно одной из сторон площадки. Каковы должны быть размеры площадки, чтобы на ограждение пошло наименьшее количество материала?

2.36. При заданном периметре прямоугольного окна найти такие его размеры, чтобы оно пропускало наибольшее количество света.

2.37. Найти максимум прибыли, если доход R и издержки C определяются формулами: где х − количество реализованного товара.

2.38. Зависимость объема выпуска продукции W от капитальных затрат К определяется функцией
Найти интервал изменения К , на котором увеличение капитальных затрат неэффективно.

2.39. Функция издержек имеет вид Доход от реализации единицы продукции равен 200. Найти оптимальное для производителя значение выпуска продукции.

2.40. Зависимость объема выпуска продукции (в денежных единицах) от капитальных затрат определяется функцией Найти интервал значений , на котором увеличение капитальных затрат неэффективно.

2.41. Считается, что увеличение реализации от затрат на рекламу (млн руб.) определяется соотношением Доход от реализации единицы продукции равен 20 тыс. руб. Найти уровень рекламных затрат, при котором фирма получит максимальную прибыль.

2.42. Доход от производства продукции с использованием единиц ресурса составляет величину Стоимость единицы ресурса – 10 ден. ед. Какое количество ресурса следует приобрести, чтобы прибыль была наибольшей?

2.43. Функция издержек имеет вид Доход от реализации единицы продукции равен 50. Найти максимальное значение прибыли, которое может получить производитель.

2.44. Зависимость дохода монополии от количества выпускаемой продукции определяется как Функция издержек на этом промежутке имеет вид Найти оптимальное для монополии значение выпуска продукции.

2.45. Цена на продукцию монополии-производителя устанавливается в соответствии с отношением, идентифицируемым как . При каком значении выпуска продукции доход от ее реализации будет наибольшим?

2.46. Функция издержек имеет следующий вид при при . В настоящий момент уровень выпуска продукции При каком условии на параметр p фирме выгодно уменьшить выпуск продукции, если доход от реализации единицы продукции равен 50?