Падение тел. Движение тела, брошенного под углом к горизонту Тело под углом к горизонту формулы

Рассмотрим в качестве примера применения выведенных формул движение тела, брошенного под углом к горизонту в отсутствии сопротивления воздуха. Скажем, на горе, на высоте над уровнем моря стоит пушка, охраняющая прибрежные воды. Пусть снаряд выпускается под углом к горизонту с начальной скоростью из точки , положение которой определяется радиус-вектором (рис. 2.16).

Рис. 2.16. Движение тела, брошенного под углом к горизонту

Дополнение.

Вывод уравнений движения материальной точки в поле силы тяжести

Напишем уравнение движения (уравнение второго закона Ньютона):

это означает, что тела - материальные точки - любых масс при одних и тех же начальных условиях будут двигаться в однородном поле тяжести одинаково. Спроектируем уравнение (2.7.2) на оси декартовой системы координат. Горизонтальная ось ОХ показана на рис. 13 пунктиром, ось OY проведем через точку О вертикально вверх, а горизонтальную ось OZ , также проходящую через точку О , направим перпендикулярно вектору на нас. Получаем:

Вертикальным направлением, по определению, называется направление вектора , поэтому его проекции на горизонтальные оси OX и OY равны нулю. Во втором уравнении учтено, что вектор направлен вниз, а ось OY - вверх.

Рис. 2.17. Движение тела, брошенного под углом к горизонту.

Добавим к уравнениям движения начальные условия, которые определяют положение и скорость тела в начальный момент времени t 0 , пусть t 0 = 0 . Тогда, согласно рис. 2.7.4

Если производная некоторой функции равна нулю, то функция постоянна, соответственно из первого и третьего уравнений (2.7.3) получаем:

Во втором уравнении (2.7.3) производная равна константе, откуда следует, что функция зависит от своего аргумента линейно, то есть

Объединяя (2.7.7) и (2.7.9), получаем окончательные выражения для зависимостей проекций скорости на оси координат от времени:

Третье уравнение (2.7.11) показывает, что траектория тела плоская, целиком лежит в плоскости XOY , это вертикальная плоскость, определяемая векторами и . Очевидно, что последнее утверждение общее: как бы ни были выбраны направления осей координат, траектория тела брошенного под углом к горизонту плоская, она всегда лежит в плоскости, определяемой вектором начальной скорости и вектором ускорения свободного падения .

Если три уравнения (2.7.10) умножить на орты осей , , и и сложить, а потом то же самое проделать с тремя уравнениями (2.7.11), то мы получим зависимости от времени вектора скорости частицы и её радиус вектора. С учетом начальных условий имеем:

Формулы (2.7.12) и (2.7.13) можно было получить сразу, непосредственно из (2.7.2), если учесть, что ускорение свободного падения есть постоянный вектор. Если ускорение - производная от вектора скорости - постоянно, то вектор скорости зависит от времени линейно, а радиус-вектор, производная по времени от которого и есть линейно зависящий от времени вектор скорости, зависит от времени квадратично. Это и записано в соотношениях (2.7.12) и (2.7.13) с константами - постоянными векторами - подобранными соответственно начальным условиям в форме (2.7.4).

Из (2.7.13) в частности видно, что радиус-вектор является суммой трех векторов, складывающихся по обычным правилам, что наглядно показано на рис. 2.18.

Рис. 2.18. Представление радиус-вектора r(t) в произвольный момент времени t в виде суммы трех векторов

Эти векторы представляют собой:

Здесь отчетливо проявляется принцип независимости движений, известный в других областях физики как принцип суперпозиции (наложения). Вообще говоря, согласно принципу суперпозиции результирующий эффект нескольких воздействий представляет собой сумму эффектов от каждого воздействия в отдельности. Он является следствием линейности уравнений движения.

Видео 2.3. Независимость горизонтального и вертикального перемещений при движении в поле тяжести.

Поместим начало отсчета в точку бросания. Теперь =0 , оси, как и ранее, развернем так, чтобы ось 0x была горизонтальной, ось - вертикальной, а начальная скорость лежала в плоскости х0у (рис. 2.19).

Рис. 2.19. Проекции начальной скорости на координатные оси

Спроецируем на оси координат (см.(2.7.11)):

Траектория полета . Если из системы полученных уравнений исключить время t , то получим уравнение траектории:

Это уравнение параболы, ветви которой направлены вниз.

Дальность полета при стрельбе с высоты h . В момент падения тела (снаряд попадает в цель, находящуюся на поверхности моря). Расстояние по горизонтали от пушки до цели равно при этом . Подставляя ; в уравнение траектории, получаем квадратное уравнение для дальности полета :

У квадратного уравнения имеется два решения (в данном случае - положительное и отрицательное). Нам нужно положительное решение. Стандартное выражение для корня квадратного уравнения нашей задачи может быть приведено к виду:

достигается при , если h = 0 .

Максимальная дальность полета . При выстреле с горы высотой это уже не так. Найдем угол , при котором достигается максимальная дальность полета. Зависимость дальности полета от угла достаточно сложна, и вместо дифференцирования для нахождения максимума мы поступим следующим образом. Представим себе, что мы увеличиваем начальный угол . Сначала дальность полета растет (см. формулу (2.7.15)), достигает максимального значения и снова начинает падать (до нуля при выстреле вертикально вверх). Таким образом, для каждой дальности полета, кроме максимальной, соответсвует два направления начальной скорости.

Обратимся снова к квадратному уравнению относительности дальности полета и рассмотрим его как уравнение для угла . Учитывая, что

перепишем его в виде:

Мы снова получили квадратное уравнение, на этот раз - для неизвестной величины . Уравнение имеет два корня, что соответствует двум углам, при которых дальность полета равна . Но когда , оба корня должны совпасть. Это означает, что равен нулю дискриминант квадратного уравнения:

откуда следует результат

При этот результат воспроизводит формулу (2.7.16)

Обычно высота много меньше дальности полета на равнине. При квадратный корень может быть аппроксимирован первыми членами разложения в ряд Тейлора и мы получаем приближенное выражение

то есть дальность выстрела увеличивается примерно на высоту подъема пушки.

Когда l = l max , и a = a max , как уже отмечалось, дискриминант квадратного уравнения равен нулю, соответственно, его решение имеет вид:

Поскольку тангенс меньше единицы, угол, при котором достигается максимальная дальность полета, меньше .

Максимальная высота подъёма над начальной точкой. Эта величина может быть определена из равенства нулю вертикальной составляющей скорости в верхней точке траектории

При этом горизонтальная составляющая скорости не равна нулю, поэтому

Ниже размещены условия задач и отсканированные решения. Если вам нужно решить задачу на эту тему, вы можете найти здесь похожее условие и решить свою по аналогии. Загрузка страницы может занять некоторое время в связи с большим количеством рисунков. Если Вам понадобится решение задач или онлайн помощь по физике- обращайтесь, будем рады помочь.

Принцип решения этих задач заключается в разложении скорости свободно падающего тела на две составляющие - горизонтальную и вертикальную. Горизонтальная составляющая скорости постоянна, вертикальное движение происходит с ускорением свободного падения g=9.8 м/с 2 . Также может применяться закон сохранения механической энергии, согласно которому сумма потенциальной и кинетической энерги тела в данном случае постоянна.

Материальная точка брошена под углом к горизонту с начальной скоростью 15 м/с. Начальная кинетическая энергия в 3 раза больше кинетической энергии точки в верхней точке траектории. На какую высоту поднималась точка?

Тело брошено под углом 40 градусов к горизонту с начальной скоростью 10 м/с. Найти расстояние, которое пролетит тело до падения, высоту подъема в верхней точке траектории и время в полете.

Тело брошено с башни высотой H вниз, под углом α к горизонту, с начальной скоростью v. Найти расстояние от башни до места падения тела.

Тело массой 0,5 кг брошено с поверхност Земли под углом 30 градусов к горизонту, с начальной скоростью 10 м/с. Найти потенциальную и кинетическую энергии тела через 0,4 с.

Материальная точка брошена вверх с поверхности Земли под углом к горизонту с начальной скоростью 10 м/с. Определить скорость точки на высоте 3 м.

Тело брошено вверх с поверхности Земли под углом 60 градусов с начальной скоростью 10 м/с. Найти расстояние до точки падения, скорость тела в точке падения и время в полете.

Тело брошено вверх под углом к горизонту с начальной скоростю 20 м/с. Расстояние до точки падения в 4 раза больше максимальной высоты подъема. Найти угол, под которым брошено тело.

Тело брошено с высоты 5 м под углом 30 градусов к горизонту с начальной скоростью 22 м/с. Найти дальность полета тела и время полета тела.

Тело брошено с поверхности Земли под углом к горизонту с начальной скоростью 30 м/с. Найти тангенциальное и нормальное ускорения тела через 1с после броска.

Тело брошено с поверхности Зесли под углом 30 градусов к горизонту с начальной скоростью 14,7 м/с. Найти тангенциальное и нормальное ускорения тела через 1,25с после броска.

Тело брошено под углом 60 градусов к горизонту с начальной скоростью 20 м/с. Через какое время угол между скоростью и горизонтом станет равным 45 градусов?

Мяч, брошенный в спортзале под углом к горизонту, с начальной скоростью 20 м/с, в верхней точке траектории коснулся потолка на высоте 8м и упал на некотором расстоянии от места броска. Найти это расстояние и угол, под которым брошено тело.

Тело, брошеное с поверхности Земли под углом к горизонту, упало через 2,2с. Найти максимальную высоту подъема тела.

Камень брошен под углом 30 градусов к горизонту. На некоторой высоте камень побывал дважды - через время 1с и 3 с после броска. Найти эту высоту и начальную скорость камня.

Камень брошен под углом 30 градусов к горизонту с начальной скоростью 10 м/с. Найти расстояние от точки бросания до камня через 4 с.

Снаряд выпущен в момент, когда самолет пролетает над орудием, под углом к горизонту с начальной скоростью 500 м/с. Снаряд поразил самолет на высоте 3,5 км через 10с после выстрела. Какова скорость самолета?

Ядро массой 5 кг брошено с поверхности Земли под углом 60 градусов к горизонту. На разгон гири потрачена энергия 500Дж. Определить дальность полета и время в полете.

Тело брошено с высоты 100м вниз под углом 30 градусов к горизонту с начальной скоростью 5 м/с. Найти дальность полета тела.

Тело массой 200г, брошеное с поверхности Земли под углом к горизонту, упало на расстоянии 5м через время 1,2с. Найти работу по броску тела.

Рассмотрим движение тела, брошенного горизонтально и движущегося под действием одной только силы тяжести (сопротивлением воздуха пренебрегаем). Например, представим себе, что шару, лежащему на столе, сообщают толчок, и он докатывается до края стола и начинает свободно падать, имея начальную скорость , направленную горизонтально (рис. 174).

Спроектируем движение шара на вертикальную ось и на горизонтальную ось . Движение проекции шара на ось - это движение без ускорения со скоростью ; движение проекции шара на ось - это свободное падение с ускорением бее начальной скорости под действием силы тяжести. Законы обоих движений нам известны. Компонента скорости остается постоянной и равной . Компонента растет пропорционально времени: . Результирующую скорость легко найти по правилу параллелограмма, как показано на рис. 175. Она будет наклонена вниз, и ее наклон будет расти с течением времени.

Рис. 174. Движение шара, скатившегося со стола

Рис. 175. Шар, брошенный горизонтально со скоростью имеет в момент скорость

Найдем траекторию тела, брошенного горизонтально. Координаты тела в момент времени имеют значения

Чтобы найти уравнение траектории, выразим из (112.1) время через и подставим это выражение в (112.2). В результатё получим

График этой функции показан на рис. 176. Ординаты точек траектории оказываются пропорциональными квадратам абсцисс. Мы знаем, что такие кривые называются параболами. Параболой изображался график пути равноускоренного движения (§ 22). Таким образом, свободно падающее тело, начальная скорость которого горизонтальна, движется по параболе.

Путь, проходимый в вертикальном направлении, не зависит от начальной скорости. Но путь, проходимый в горизонтальном направлении пропорционален начальной скорости. Поэтому при большой горизонтальной начальной скорости парабола, по которой падает тело, более вытянута в горизонтальном направлении. Если из расположенной горизонтально трубки выпускать струю воды (рис. 177), то отдельные частицы воды будут, так же как и шарик, двигаться по параболе. Чем больше открыт кран, через который поступает вода в трубку, тем больше начальная скорость воды и тем дальше от крана попадает струя на дно кюветы. Поставив позади струи экран с заранее начерченными на нем параболами, можно убедиться, что струя воды действительно имеет форму параболы.

Теория

Если тело бросить под углом к горизонту, то в полете на него действуют сила тяжести и сила сопротивления воздуха. Если силой сопротивления пренебречь, то остается единственная сила – сила тяжести. Поэтому вследствие 2-го закона Ньютона тело движется с ускорением, равным ускорению свободного падения ; проекции ускорения на координатные оси равны а х = 0, а у = -g.

Любое сложное движение материальной точки можно представить как наложение независимых движений вдоль координатных осей, причем в направлении разных осей вид движения может отличаться. В нашем случае движение летящего тела можно представить как наложение двух независимых движений: равномерного движения вдоль горизонтальной оси (оси Х) и равноускоренного движения вдоль вертикальной оси (оси Y) (рис. 1).

Проекции скорости тела, следовательно, изменяются со временем следующим образом:

,

где – начальная скорость, α – угол бросания.

Координаты тела, следовательно, изменяются так:

При нашем выборе начала координат начальные координаты (рис. 1) Тогда

Второе значение времени, при котором высота равна нулю, равно нулю, что соответствует моменту бросания, т.е. это значение также имеет физический смысл.

Дальность полета получим из первой формулы (1). Дальность полета – это значение координаты х в конце полета, т.е. в момент времени, равный t 0 . Подставляя значение (2) в первую формулу (1), получаем:

. (3)

Из этой формулы видно, что наибольшая дальность полета достигается при значении угла бросания, равном 45 градусов.

Наибольшую высоту подъема брошенного тела можно получить из второй формулы (1). Для этого нужно подставить в эту формулу значение времени, равное половине времени полета (2), т.к. именно в средней точке траектории высота полета максимальна. Проводя вычисления, получаем

Если скорость \(~\vec \upsilon_0\) направлена не вертикально, то движение тела будет криволинейным.

Рассмотрим движение тела, брошенного горизонтально с высоты h со скоростью \(~\vec \upsilon_0\) (рис. 1). Сопротивлением воздуха будем пренебрегать. Для описания движения необходимо выбрать две оси координат - Ox и Oy . Начало отсчета координат совместим с начальным положением тела. Из рисунка 1 видно, что υ 0x = υ 0 , υ 0y = 0, g x = 0, g y = g .

Тогда движение тела опишется уравнениями:

\(~\upsilon_x = \upsilon_0,\ x = \upsilon_0 t; \qquad (1)\) \(~\upsilon_y = gt,\ y = \frac{gt^2}{2}. \qquad (2)\)

Анализ этих формул показывает, что в горизонтальном направлении скорость тела остается неизменной, т. е. тело движется равномерно. В вертикальном направлении тело движется равноускоренно с ускорением \(~\vec g\), т. е. так же, как тело, свободно падающее без начальной скорости. Найдем уравнение траектории. Для этого из уравнения (1) найдем время \(~t = \frac{x}{\upsilon_0}\) и, подставив его значение в формулу (2), получим\[~y = \frac{g}{2 \upsilon^2_0} x^2\] .

Это уравнение параболы. Следовательно, тело, брошенное горизонтально, движется по параболе. Скорость тела в любой момент времени направлена по касательной к параболе (см. рис. 1). Модуль скорости можно рассчитать по теореме Пифагора:

\(~\upsilon = \sqrt{\upsilon^2_x + \upsilon^2_y} = \sqrt{\upsilon^2_0 + (gt)^2}.\)

Зная высоту h , с которой брошено тело, можно найти время t 1 , через которое тело упадет на землю. В этот момент координата y равна высоте: y 1 = h . Из уравнения (2) находим\[~h = \frac{gt^2_1}{2}\]. Отсюда

\(~t_1 = \sqrt{\frac{2h}{g}}. \qquad (3)\)

Формула (3) определяет время полета тела. За это время тело пройдет в горизонтальном направлении расстояние l , которое называют дальностью полета и которое можно найти на основании формулы (1), учитывая, что l 1 = x . Следовательно, \(~l = \upsilon_0 \sqrt{\frac{2h}{g}}\) - дальность полета тела. Модуль скорости тела в этот момент \(~\upsilon_1 = \sqrt{\upsilon^2_0 + 2gh}.\).

Литература

Аксенович Л. А. Физика в средней школе: Теория. Задания. Тесты: Учеб. пособие для учреждений, обеспечивающих получение общ. сред, образования / Л. А. Аксенович, Н.Н.Ракина, К. С. Фарино; Под ред. К. С. Фарино. - Мн.: Адукацыя i выхаванне, 2004. - С. 15-16.