Правильные многогранники вокруг нас. Многогранники

Тела Платона, выпуклые многогранники, все грани к рых суть одинаковые правильные многоугольники и все многогранные углы при вершинах правильные и равные (рис. 1a 1д). В евклидовом пространстве Е 3 существуют пять П. м., данные о к рых приведены в … Математическая энциклопедия

Правильный n мерный многогранник многогранники n мерного евклидова пространства, которые являются наиболее симметричными в некотором смысле. Правильные трёхмерные многогранники называются также платоновыми телами. Содержание 1 Определение 2 … Википедия

Многогранник поверхность составленная из многоугольников, а также тело ограниченное такой поверхностью. Содержание 1 Три варианта определения 2 Вариации и обобщения 3 Использование … Википедия

Многогранники, все грани которых суть правильные многоугольники нескольких разных наименований, а многогранные углы при вершинах конгруэнтны. Существует 13 определённых типов П. м. и две бесконечные серии. См. Многогранник …

Или Архимедовы тела выпуклые многогранники, обладающие двумя свойствами: Все грани являются правильными многоугольниками двух или более типов (если все грани правильные многоугольники одного типа, это правильный многогранник); Для любой пары… … Википедия

Тела Архимеда, выпуклые многогранники, все грани к рых суть правильные многоугольники, а многогранные углы конгруэнтны или симметричны. Данные о П. м. приведены в таблице, где В число вершин, Р число ребер, Г число граней, Г k. число nk угольных… … Математическая энциклопедия

Многогранник - Многогранники (правильные выпуклые): 1 тетраэдр; 2 куб; 3 октаэдр; 4 додекаэдр; 5 икосаэдр. МНОГОГРАННИК, поверхность, состоящая из многоугольников (граней) таких, что каждая сторона любого из них есть одновременно сторона другого многоугольника… … Иллюстрированный энциклопедический словарь

Часть пространства, ограниченная совокупностью конечного числа плоских многоугольников (см. ГЕОМЕТРИЯ), соединенных таким образом, что каждая сторона любого многоугольника является стороной ровно одного другого многоугольника (называемого… … Энциклопедия Кольера

В трёхмерном пространстве, совокупность конечного числа плоских многоугольников, такая, что каждая сторона любого из многоугольников есть одновременно сторона другого (но только одного), называемого смежным с первым (по этой стороне); от… … Большая советская энциклопедия

Додекаэдр Правильный многогранник или платоново тело это выпуклый многогранник, состоящий из одинаковых правильных многоугольников и обладающий пространственной симметрией … Википедия

Книги

  • Волшебные грани № 12. Многогранник. Правильные многогранники , . Создание моделей многогранников из картона очень увлекательное и доступное занятие, это "магия превращения" листа бумаги в объемную фигуру. Специальный выпуск позволяет собрать 5 правильных…
  • Группы отражений и правильные многогранники , Смирнов Е.Ю.. Брошюра написана по материалам цикла лекций, прочитанных автором участникам Летней школы "Современная математика" в Дубне 20-26 июля 2008 г. В ней излагается классификация правильных…

Министерство общего и профессионального образования
Свердловской области

МОУО

Образовательное учреждение:

Образовательная область: естественнонаучная
Предмет: математика

Тема исследовательского проекта:
«Правильные многогранники»

                Исполнитель:
                Руководитель:
                Внешний рецензент:
2010 г.

Содержание:
Введение 3-4
Глава 1. Элементы теории правильных многогранников 5-10
§ 1. Определение многогранника и его элементов 5-6
§ 2. Пять правильных многогранников 7-8
§ 3. Теорема Эйлера 9
Глава 2. Исследования правильных многогранников в
период до нашей эры 10-12
Глава 3. Исследования правильных многогранников
в XVI – XIX вв. 13-15
Глава 4. Правильные многогранники в нашей жизни 16-18
§ 1. Многогранники вокруг нас 16-17
§ 2. Правильные многогранники в искусстве 18
Примеры задач 19-22
Заключение 23-24
Приложения 25-34
Список литературы 35

Введение

Есть в школьной геометрии особые темы, которые ждешь с нетерпением, предвкушая встречу с невероятно красивым материалом. К таким темам можно отнести "Правильные многогранники". Здесь не только открывается удивительный мир геометрических тел, обладающих неповторимыми свойствами, но и интересные научные гипотезы. И тогда урок геометрии становится своеобразным исследованием неожиданных сторон привычного школьного предмета.

Ни одни геометрические тела не обладают таким совершенством и красотой, как правильные многогранники. "Правильных многогранников вызывающе мало, - написал когда-то Л. Кэролл, - но этот весьма скромный по численности отряд сумел пробраться в самые глубины различных наук".

Гипотеза:
если выстроить хронологически события исследований правильных многогранников, то можно выявить основные этапы и особенности изучения Платоновых тел
Объект исследования:
правильные многогранники (Платоновы тела)
Предмет исследования:
основная периодизация исследований правильных многогранников, основные составляющие исследований, их взамосвязь.
Основная цель данного проекта – познакомиться с понятием правильных многогранников и выявить основные особенности исследования Платоновых тел.
Постановка такой цели предопределила формулировку следующих задач:

    Изучить историю открытий в области правильных многогранников
    Определить основные этапы исследований Платоновых тел, их содержание, взаимосвязь
    Выявить и охарактеризовать основные составляющие исследований правильных многогранников, их динамику и особенности

Глава 1
Элементы теории правильных многогранников

§ 1. Определение многогранника и его элементов

Определение : многогранником называется поверхность, составленная из многоугольников и ограничивающая некоторое геометрическое тело.
Многогранники делятся на выпуклые и невыпуклые
Определение : выпуклым многогранником называется такой многогранник, что если взять плоскость любой его грани, то весь многогранник окажется по одну сторону от этой плоскости
Выпуклые многогранники, в свою очередь, делятся на неправильные и правильные
Определение: Правильный многогранник, или Платоново тело - это выпуклый многогранник с максимально возможной симметрией.
Многогранник называется правильным, если:
1 он выпуклый
2 все его грани являются равными правильными многоугольниками
3 в каждой его вершине сходится одинаковое число рёбер 1
Всего существует 5 правильных многогранников (тетраэдр, куб, октаэдр, додекаэдр, икосаэдр), доказательство этого факта я рассмотрю в следующем параграфе
Таблица 1

Правильный многогранник Число
Граней Вершин Ребер
Тетраэдр Куб
Октаэдр
Додекаэдр
Икосаэдр
4 6
8
12
20
4 8
6
20
12
6 12
12
30
30

В Таблице 1 приведены сведения о числе граней, ребер и вершин правильных многогранников

§ 2. Пять правильных многогранников

Ни одни геометрические тела не обладают таким совершенством и красотой, как правильные многогранники. "Правильных многогранников вызывающе мало , - написал когда-то Л. Кэролл, - но этот весьма скромный по численности отряд сумел пробраться в самые глубины различных наук ".
Каково же это вызывающе малое количество и почему их именно столько. А сколько? Оказывается, ровно пять - ни больше ни меньше. Рассмотрим доказательство данного факта. 2
Докажем, что не существует правильного многогранника, гранями которого являются правильные шестиугольники, семиугольники и вообще n-угольники при n больше либо равным шести.
В самом деле, угол правильного n-угольника при n больше либо равным шести не меньше 120 градусов (углы между сторонами правильного многоугольника не меньше 180-360/p градусов (где p-число ребер)). С другой стороны, при каждой вершине многогранника должно быть не менее трех плоских углов. Поэтому если бы существовал правильный многогранник, у которого грани – правильные n-угольники при n больше либо равным шести, то сумма плоских углов при каждой вершине такого многогранника была бы не меньше, чем 120 * 3 = 360 градусов. Но это не возможно, так как сумма всех плоских углов при каждой вершине выпуклого многогранника меньше 360 градусов. 3
Мы доказали, что существует пять и только пять правильных выпуклых многогранников. Доказательство того, что больше не может быть, содержится в «Началах» Евклида, причем автором этого доказательства считается Теэтет. Известно, что в течение нескольких лет Теэтет состоял в Академии и был близок к Платону, и этой близостью можно объяснить то обстоятельство, что Платон оказался знакомым с новейшими в то время открытиями в области стереометрии 4 .

§ 3. Теорема Эйлера

Теорема Эйлера для многогранников - теорема, устанавливающая связь между числом вершин, рёбер и граней для многогранников, топологически эквивалентных сфере.
Рассматривая табл. 1, зададимся вопросом: «нет ли закономерности в возрастании чисел в каждом столбце?» По-видимому, нет. Вот в столбце «грани» все сначала пошло хорошо (4 + 2 = 6, 6 + 2 = 8), а потом намеченная закономерность «провалилась» (8 + 2). В столбце «вершины» нет даже стабильного возрастания. Число вершин то возрастает (от 4 до 8, от 6 до 20), а то и убывает (от 8 до 6, от 20 до 12). В столбце «ребра» закономерности тоже не видно.
Мы сравнивали числа внутри одного столбца. Но можно рассмотреть сумму чисел в двух столбцах, хотя бы в столбцах «грани» и «вершины» (Г + В). Сравним новую таблицу своих подсчетов (см. табл. 2).
Таблица № 2

Правильный многогранник
Число
Граней и вершин (Г + В) Ребер (Р)
Тетраэдр Куб
Октаэдр
Додекаэдр
Икосаэдр
4 + 4 = 8 6 + 8 = 14
8 + 6 = 14
12 + 20 = 32
20 + 12 = 32
6 12
12
30
30

Вот теперь закономерность видна.
Сформулируем ее так: «Сумма числа граней и вершин равна числу ребер, увеличенному на 2»: Г + В = Р + 2 .
Итак, получена формула, которая была подмечена уже Декартом в 1640 году, а позднее переоткрыта Эйлером (1752), имя которого с тех пор она и носит. Формула Эйлера верна для любых выпуклых многогранников. 5

Глава 2
Исследования правильных многогранников в период до нашей эры

Названия правильных многогранников пришли из Древней Греции. В дословном переводе с греческого "тетраэдр", "октаэдр", "гексаэдр", "додекаэдр", "икосаэдр" означают: "четырехгранник", "восьмигранник", "шестигранник". "двенадцатигранник", "двадцатигранник". Этим красивым телам посвящена 13-я книга "Начал" Евклида. Их еще называют телами Платона, т.к. они занимали важное место в философской концепции Платона об устройстве мироздания. Четыре многогранника олицетворяли в ней четыре сущности или "стихии". Тетраэдр символизировал огонь, т.к. его вершина устремлена вверх; икосаэдр - воду, т.к. он самый "обтекаемый"; куб - землю, как самый "устойчивый"; октаэдр - воздух, как самый "воздушный". Пятый многогранник, додекаэдр, воплощал в себе "все сущее", символизировал все мироздание, считался главным. 6
В рамках этого этапа, на мой взгляд, можно выявить две основных составляющих:
1. Теория «4 стихий» Платона
2. Построение правильных многоугольников Евклидом
Гармоничные отношения древние греки считали основой мироздания, поэтому четыре стихии у них были связаны такой пропорцией: земля/вода = воздух/огонь. Атомы "стихий" настраивались Платоном в совершенных консонансах, как четыре струны лиры. Напомню, что консонансом называется приятное созвучие. Надо сказать, что своеобразные музыкальные отношения в Платоновых телах являются чисто умозрительными и не имеют под собой никакой геометрической основы. Этими отношениями не связаны ни число вершин Платоновых тел, ни объемы правильных многогранников, ни число ребер или граней.
В связи с этими телами уместно будет сказать, что первая система элементов, включавшая четыре элемента - землю, воду, воздух и огонь, - была канонизирована Аристотелем. Эти элементы оставались четырьмя краеугольными камнями мироздания в течение многих веков. Вполне возможно отождествить их с известными нам четырьмя состояниями вещества - твердым, жидким, газообразным и плазменным. 7
Эвклид в своих «Началах» занимался построением правильных многоугольников в книге IV, решая задачу для n = 3, 4, 5, 6, 15. Кроме этого, он уже определил первый критерий построимости многоугольников: хотя этот критерий и не был озвучен в «Началах», древнегреческие математики умели построить многоугольник с 2m сторонами (при целом m > 1), имея уже построенный многоугольник с числом сторон 2m - 1: пользуясь умением разбиения дуги на две части, из двух полуокружностей мы строим квадрат, потом правильный восьмиугольник, правильный шестнадцатиугольник и так далее. Кроме этого, в той же книге Евклид указывает и второй критерий: если известно, как строить многоугольники с r и s сторонами, и r и s взаимно простые, то можно построить и многоугольник с r · s сторонами. Синтезируя эти два способа, можно прийти к выводу, что древние математики умели строить правильные многоугольники со сторонами, где m - целое неотрицательное число, p1,p2 - числа 3 и 5, а k1,k2 принимают значения 0 или 1.
Начиная с 7 века до нашей эры в Древней Греции создаются философские школы, в которых происходит постепенный переход от практической к философской геометрии. Большое значение в этих школах приобретают рассуждения, с помощью которых удалось получать новые геометрические свойства.
Одной из первых и самых известных школ была Пифагорейская, названная в честь своего основателя Пифагора.
Отличительным знаком пифагорейцев была пентаграмма, на языке математики - это правильный невыпуклый или звездчатый пятиугольник.
Пентаграмме присваивалось способность защищать человека от злых духов. Существование только пяти правильных многогранников относили к строению материи и Вселенной. Пифагорейцы, а затем Платон полагали, что материя состоит из четырех основных элементов: огня, земли, воздуха и воды.
Средневековая математика почти никак не продвинулась в вопросе построения правильных многогранников. Начался новый период изучения правильных многогранников, который я рассмотрю в следующей главе.

Глава 3
Исследования правильных многогранников в XVI – XIX вв.

А теперь от Древней Греции перейдём к Европе XVI – XVII вв., когда жил и творил замечательный немецкий астроном, математик Иоганн Кеплер (1571-1630). Представим себя на месте Кеплера. Перед ним различные таблицы – столбики цифр. Это результаты наблюдений движения планет Солнечной системы – как его собственных, так и великих предшественников – астрономов. В этом мире вычислительной работы он хочет найти некоторые закономерности. Иоганн Кеплер, для которого правильные многогранники были любимым предметом изучения, предположил, что существует связь между пятью правильными многогранниками и шестью открытыми к тому времени планетами Солнечной системы. Согласно этому предположению, в сферу орбиты Сатурна можно вписать куб, в который вписывается сфера орбиты Юпитера.
В неё, в свою очередь, вписывается тетраэдр, описанный около сферы орбиты Марса. В сферу орбиты Марса вписывается додекаэдр, в который вписывается сфера орбиты Земли. А она описана около икосаэдра, в который вписана сфера орбиты Венеры. Сфера этой планеты описана около октаэдра, в который вписывается сфера Меркурия. Такая модель Солнечной системы получила название «Космического кубка» Кеплера. Результаты своих вычислений учёный опубликовал в книге «Тайна мироздания». Он считал, что тайна Вселенной раскрыта. Год за годом учёный уточнял свои наблюдения, перепроверял данные коллег, но, наконец, нашёл в себе силы отказаться от заманчивой гипотезы. Однако её следы просматриваются в третьем законе Кеплера, где говориться о кубах средних растояний от Солнца.
Сегодня можно с уверенностью утверждать, что расстояния между планетами и их число никак не связаны с многогранниками. Конечно, структура Солнечной системы не является случайной, но истинные причины, по которым она устроена так, а не иначе, до сих пор не известны. Идеи Кеплера оказались ошибочными, но без гипотез, иногда самых неожиданных, казалось бы, бредовых, не может существовать наука. 8
Кроме полуправильных многогранников, из правильных многогранников – Платоновых тел можно получить так называемые правильные звездчатые многогранники . Их всего четыре. Первые два были открыты И. Кеплером (1571 – 1630 гг.), а два других были построены почти двести лет спустя французским математиком и механиком Луи Пуансо (1777 – 1859 гг.). Именно поэтому правильные звездчатые многогранники получили название тел Кеплера – Пуансо. В работе «О многоугольниках и многогранниках» (1810 г.) Луи Пуансо перечислил и описал все правильные звездчатые многогранники, поставил, но не решил вопрос о существовании правильных многогранников, число граней которых отлично от 4, 6, 8, 12, 20. Ответ на этот вопрос был дан год спустя, в 1811 году, французским математиком Огюстом Луи Коши (1789 – 1857 гг.) в работе «Исследование о многогранниках». В ней доказывается, что не существует других правильных многогранников, кроме перечисленных Пуансо. Автор приходит к выводу, что правильные звездчатые многогранники получаются из выпуклых правильных многогранников путем продолжения их ребер или граней, исследуется вопрос, из каких именно правильных многогранников могут быть получены правильные звездчатые многогранники. Делается вывод о том, что тетраэдр, куб и октаэдр не имеют звездчатых форм, додекаэдр имеет три, а икосаэдр – одну звездчатую форму (это малый звездчатый додекаэдр, большой додекаэдр и большой икосаэдр). 9
Таким образом, в рамках второго этапа исследований можно выявить 3 составляющих:

    «Космический кубок» Кеплера
    Работа «О многоугольниках и многогранниках» и теория правильных звездчатых многогранников Луи Пуансо
    Работа «Исследование многогранников» Луи Коши
Луи Кэрролл писал: "Правильных многогранников вызывающе мало, но этот весьма скромный по численности отряд сумел пробраться в самые глубины различных наук".
В глубины, каких наук пробрались правильные многогранники? Где в жизни мы можем их повстречать? На этот вопрос постараемся дать ответ в следующей главе

Глава 4
Правильные многогранники в нашей жизни
§ 1. Многогранники вокруг нас
Правильные многогранники – самые выгодные фигуры, поэтому они широко распространены в природе. Подтверждением тому служит форма некоторых кристаллов. Например, кристаллы поваренной соли имеют форму куба.
При производстве алюминия пользуются алюминиево-калиевыми кварцами (K ? 12H2O), монокристалл которых имеет форму правильного октаэдра. Получение серной кислоты, железа, особых сортов цемента не обходится без сернистого колчедана (FeS). Кристаллы этого химического вещества имеют форму додекаэдра. В разных химических реакциях применяется сурьменистый сернокислый натрий (Na5(SbO4(SO4)) – вещество, синтезированное учёными. Кристалл сурьменистого сернокислого натрия имеет форму тетраэдра. Последний правильный многогранник – икосаэдр передаёт форму кристаллов бора.
Правильные многогранники встречаются так же и в живой природе. Например, скелет одноклеточного организма феодарии (Circjgjnia icosahtdra) по форме напоминает икосаэдр.
Чем же вызвана такая природная геометризация феодарий? По-видимому, тем, что из всех многогранников с тем же числом граней именно икосаэдр имеет наибольший объём при наименьшей площади поверхности. Это свойство помогает морскому организму преодолевать давление водной толщи.
Идеи Платона и Кеплера о связи правильных многогранников с гармоничным устройством мира и в наше время нашли своё продолжение в интересной научной гипотезе, которую в начале 80-х гг. высказали московские инженеры В. Макаров и В. Морозов. Они считают, что ядро Земли имеет форму и свойства растущего кристалла, оказывающего воздействие на развитие всех природных процессов, идущих на планете. Лучи этого кристалла, а точнее, его силовое поле, обуславливают икосаэдро-додекаэдровую структуру Земли. Она проявляется в том, что в земной коре как бы проступают проекции вписанных в земной шар правильных многогранников: икосаэдра и додекаэдра.
Многие залежи полезных ископаемых тянутся вдоль икосаэдро-додекаэдровой сетки; 62 вершины и середины рёбер многогранников, называемых авторами узлами, обладают рядом специфических свойств, позволяющих
объяснить некоторые непонятные явления. Здесь располагаются очаги древнейших культур и цивилизаций: Перу, Северная Монголия, Гаити, Обская культура и другие. В этих точках наблюдаются максимумы и минимумы атмосферного давления, гигантские завихрения Мирового океана. В этих узлах находятся озеро Лох-Несс, Бермудский треугольник.
Дальнейшие исследования Земли, возможно, определят отношение к этой научной гипотезе, в которой, как видно, правильные многогранники занимают важное место. 10
Интересно и то, что именно икосаэдр оказался в центре внимания биологов в их спорах относительно формы вирусов. Вирус не может быть совершенно круглым, как считалось ранее. Чтобы установить его форму, брали различные многогранники, направляли на них свет под теми же углами, что и поток атомов на вирус. Оказалось, что только один многогранник дает точно такую же тень - икосаэдр. Его геометрические свойства, о которых говорилось выше, позволяют экономить генетическую информацию.
§ 2. Правильные многогранники в искусстве
В эпоху Возрождения большой интерес к формам правильных многогранников проявили скульпторы. архитекторы, художники. Леонардо да Винчи (1452 -1519) например, увлекался теорией многогранников и часто изображал их на своих полотнах. Он проиллюстрировал правильными и полуправильными многогранниками книгу Монаха Луки Пачоли ""О божественной пропорции.""
Знаменитый художник эпохи возрождения Альбрехт Дюрер на переднем плане своей гравюры «Меланхолия» изобразил додекаэдр. В 1525 году он написал трактат, в котором представил, пять правильных многогранников, поверхности которых служат хорошими моделями перспективы
Сальвадор Дали использует в своей картине «Тайная вечеря» додекаэдр, который служит своеобразным «окном» в окружающий мир и подчеркивает важность этого события.

Примеры задач
Задача 1 Можно ли десять городов соединить между собой непересекающимися дорогами так, чтобы из каждого города выходило пять дорог, ведущих в пять других городов?

Решение Предположим, что города можно соединить между собой дорогами так, как указано в задаче. В таком случае, если какие-то два города окажутся не соединенными дорогой непосредственно, то найдётся третий город, который уже будет непосредственно соединён с каждым из них. Изобразив на плоскости города точками, а дороги - дугами, получим, что любые две точки соединены цепочкой дуг. Так как в каждой точке сходятся пять дуг, то общее число дуг равно?·5·10 = 25. Согласно теореме Эйлера эти дуги делят плоскость на 2 + 25 – 10 = 17 областей. Каждая из этих семнадцати областей ограничена по крайней мере тремя дугами, так как в противном случае нашлись бы два города, непосредственно соединённые по крайней мере двумя дорогами, а это противоречит условию задачи. Следовательно, число дуг не меньше?·3·17 = 25,5. Таким образом, исходное предположение приводит нас к противоречию, и города нельзя соединить между собой так, как это требуется в задаче. 11

Задача 2 Три поссорившихся соседа имеют три общих колодца. Можно ли провести непересекающиеся дорожки от каждого дома к каждому колодцу?

Решение Предположим, что это сделать можно.

Изобразим дома синими, а колодцы - чёрными точками и каждую синюю точку соединим дугой с каждой чёрной точкой так, чтобы девять полученных дуг попарно не пересекались. Тогда всякие две точки, изображающие дома или колодцы, будут соединены цепочкой дуг, и в силу теоремы Эйлера эти девять дуг разделят плоскость на 9–6+2=5 областей. Каждая из пяти областей ограничена по крайней мере четырьмя дугами, так как по условию задачи ни одна из дорожек не должна непосредственно соединять два дома или два колодца. Поэтому число дуг должно быть не меньше?·5·4 = 10, и, следовательно, наше предположение неверно. 12

Задача 3 Докажите, что на всякой карте найдётся страна, граничащая не более чем с пятью странами.

Решение. Если число стран на карте не превосходит шести, то утверждение задачи очевидно. Мы докажем, что на карте, имеющей более шести стран, найдутся даже четыре страны, каждая из которых граничит не более чем с пятью странами. Окрасим вершины и дуги исходной карты в чёрный цвет, а красной краской отметим в каждой стране по одной точке. Всякие две отмеченные точки, лежащие в соседних странах (то есть странах, имеющих общую граничную дугу), соединим внутри этих стран красной дугой так, чтобы красные дуги попарно не пересекались. Тогда всякие две красные точки будут соединены цепочкой дуг, и так как никакие две построенные дуги не будут соединять одни и те же точки, то каждая страна на карте, состоящей из точек и дуг красного цвета, будет ограничена не менее чем тремя дугами. Если какая-то страна на этой карте ограничена более чем тремя дугами, то на её границе можно выбрать две вершины, не соединённые дугой, и соединить их красной дугой внутри этой страны. Повторяя несколько раз эту операцию, мы получим красную карту, на которой каждая страна ограничена ровно тремя дугами. Так как, кроме того, на этой карте никакие две дуги не соединяют одни и те же вершины и так как число вершин больше трёх, то из каждой вершины выходят не менее чем три дуги. Обозначим через n число дуг, через l - число стран, через m - число всех вершин красной карты и через a - число вершин, из которых выходят менее чем шесть дуг. Тогда получим3l = 2n, (1)
и т.д.................

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ МОСКОВСКОЙ ОБЛАСТИ

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ОБЛАСТНОЙ ГУМАНИТАРНЫЙ ИНСТИТУТ

КАФЕДРА МАТЕМАТИКИ И МЕТОДИКИ ПРЕПОДАВАНИЯ МАТЕМАТИКИ

РЕФЕРАТ

ПРАВИЛЬНЫЕ И ПОЛУПРАВИЛЬНЫЕ МНОГОГРАННИКИ

ИСПОЛНИТЕЛИ: .

СТУДЕНТКИ 3-ГО КУРСА 1 ГРУППЫ

ФИЗИКО-МАТЕМАТИЧЕСКОГО ФАКУЛЬТЕТА

ПАНКОВА АНАСТАСИЯ ОЛЕГОВНА

АНТОНОВА ЕЛЕНА НИКОЛАЕВНА

Г. ОРЕХОВО-ЗУЕВО

Правильных многогранников

вызывающе мало, но этот весьма

скромный по численности отряд

сумел пробиться в самые глубины

различных наук.

Л. Кэрролла.

1. Введение.

Человек проявляет интерес к правильным многогранникам на протяжении всей своей сознательной деятельности – от двухлетнего ребенка, играющего деревянными кубиками, до зрелого математика, наслаждающегося чтением книг о многогранниках. Некоторые из правильных и полуправильных тел встречаются в природе в виде кристаллов, другие – в виде вирусов (которые можно рассмотреть с помощью электронного микроскопа). Пчелы строили шестиугольные соты задолго до появления человека, а в истории цивилизации создание многогранных тел (подобных пирамидам) наряду с другими видами пластических искусств уходит в глубь веков.

Наш реферат посвящен теме правильных и полуправильных многогранников. Их изучали Теэтет, Платон, Евклид, Гипсикл и Папп. Также и нас эти удивительные тела не оставили равнодушной. Ведь их форма – образец совершенства!

Сколько всего правильных многогранников? Какими особенностями они обладают? Как изготовить модель какого-либо правильного многогранника? Где можно встретить эти тела? Ответить на эти и многие другие вопросы и является целью нашей работы.

2. Правильные многогранники.

Многогранник называется правильным , если: во-первых, он выпуклый; во-вторых, все его грани – равные друг другу правильные многоугольники; в-третьих, в каждой его вершине сходится одинаковое число ребер; и, в-четвертых, все его двугранные углы равны.

Возникает вопрос: сколько же существует правильных многогранников? На первый взгляд ответ на этот вопрос очень простой – столько же, сколько существует правильных многоугольников. Однако это не так. В «Началах Евклида» мы находим строгое доказательство того, что существует только пять выпуклых правильных многогранников - ни больше ни меньше, а их гранями могут быть только три типа правильных многоугольников: треугольники, квадраты и пентагоны или правильные пятиугольники (тетраэдр, гексаэдр (куб), октаэдр, икосаэдр и додекаэдр).

Названия правильных многогранников пришли из Греции. В дословном переводе с греческого «тетраэдр», «октаэдр», «гексаэдр», «додекаэдр», «икосаэдр» означают: «четырехгранник», «восьмигранник», «шестигранник», «двенадцатигранник», «двадцатигранник». Этим красивым телам посвящена 13-я книга "Начал" Евклида.

Все правильные многогранники получили название Платоновых тел , так как они занимали важное место в философской концепции Платона об устройстве мироздания.

Платон (427-347 годы до н.э.)

Четыре многогранника олицетворяли в ней четыре сущности или «стихии». Тетраэдр символизировал огонь, так как его вершина устремлена вверх; икосаэдр - воду, так как он самый «обтекаемый»; куб - землю, как самый «устойчивый»; октаэдр - воздух, как самый «воздушный». Пятый многогранник, додекаэдр, воплощал в себе «все сущее или» «Вселенский разум», символизировал все мироздание, считался главным.

Гармоничные отношения древние греки считали основой мироздания, поэтому четыре стихии у них были связаны такой пропорцией: земля/вода=воздух/огонь.

Тетраэдр эточетырехгранник, все грани которого треугольники, т.е. треугольная пирамида; правильный тетраэдр ограничен четырьмя равносторонними треугольниками; один из пяти правильных многоугольников (рис. 1-а). В тетраэдре три равносторонних треугольника встречаются в одной вершине; при этом их основания образуют новый равносторонний треугольник. Тетраэдр имеет наименьшее число граней среди Платоновых тел и является трехмерным аналогом плоского правильного треугольника, который имеет наименьшее число сторон среди правильных многоугольников.

Куб или правильный гексаэдр - это правильная четырехугольная призма с равными ребрами, ограниченная шестью квадратами (рис 1-б). Куб, получается, если соединить три квадрата в одной точке и затем добавить еще три.

Октаэдр - этовосьмигранник; тело, ограниченное восемью треугольниками; правильный октаэдр ограничен восемью равносторонними треугольниками; один из пяти правильных многогранников(рис.1-в). В октаэдре в одной вершине встречаются четыре треугольника; в результате получается пирамида с четырехугольным основанием.

Икосаэдр - этодвадцатигранник, тело, ограниченное двадцатью многоугольниками; правильный икосаэдр ограничен двадцатью равносторонними треугольниками ( рис 1-г).

Додекаэдр - этодвенадцатигранник, тело, ограниченное двенадцатью многоугольниками; правильный пятиугольник ( рис 1-д). Оноснован на использовании следующего правильного многоугольника – пентагона .

Рисунок 1. Платоновы тела: (а) октаэдр («Огонь»), (б) гексаэдр или куб («Земля»),
(в) октаэдр («Воздух»), (г) икосаэдр («Вода»), (д) додекаэдр («Вселенский разум»)

Следующим правильным многоугольником является шестиугольник . Однако если соединить три шестиугольника в одной точке, то мы получим поверхность, то есть из шестиугольников нельзя построить объемную фигуру. Любые другие правильные многоугольники выше шестиугольника не могут образовывать тел вообще. Из этих рассуждений вытекает, что существует только пять правильных многогранников, гранями которых могут быть только равносторонние треугольники, квадраты и пентагоны.

Куб и октаэдр дуальны, т.е. получаются друг из друга, если центры тяжести граней одного принять за вершины другого и обратно. Аналогично дуальны додекаэдр и икосаэдр. Тетраэдр дуален сам себе. Правильный додекаэдр получается из куба построением “крыш” на его гранях (способ Евклида), вершинами тетраэдра являются любые четыре вершины куба, попарно не смежные по ребру. Так получаются из куба все остальные правильные многогранники. Сам факт существования всего пяти действительно правильных многогранников удивителен - ведь правильных многоугольников на плоскости бесконечно много!

Развертки правильных многогранников:


3. Доказательство существования пяти правильных многогранников.

Мы знаем, что правильных многогранников существует только пять. Теперь попробуем это доказать.

Предположим, что правильный многогранник имеет Г граней, из которых каждая есть правильный n-угольник, у каждой вершины сходятся k ребер, всего в многограннике В вершин и Р ребер, причем n3, поскольку у каждой вершины сходится не менее трех сторон, и k3, поскольку у каждой вершины сходится не менее трех ребер.

Считая ребра по граням, получим: n Г = 2Р.

Каждое ребро принадлежит двум граням, значит, в произведении

nГ число Р удвоено.

Считая ребра по вершинам, получим: kВ = 2Р, поскольку каждое ребро упирается в 2 вершины. Тогда равенство Эйлера дает:

или . (*)

По условию , тогда , т.е. n и k не могут быть более трех. Например, если бы было n = 4 и k = 4, то тогда и Прикидкой можно проверить, что и другие значения n и k, большие 3, не удовлетворяют равенству (*). Значит, либо k = 3, либо n = 3.

Пусть n = 3 , тогда равенство (*) примет вид:

или

Поскольку может принимать значения , ,

т.е. k = 3, 4, 5.

Если k = 3, n = 3 , то P = 6, Г = В = - это тетраэдр (см. табл. 1).

Если k = 4, n = 3 , то Р = 12, Г = , В = - это октаэдр.

Если k = 5, n = 3 , то Р = 30, Г = В = - это икосаэдр.

Пусть теперь k = 3, тогда равенство (*) примет вид:

Отсюда следует, что n может принимать значения 3, 4, 5.

Случай n = 3 разобран.

Остаются два случая:

n = 4 при k = 3, тогда , т.е. Р = 12, Г = , В = - это куб.

n = 5 при k = 3, тогда , Р = 30, Г = 12, В = 30 - это додекаэдр.

Вот мы и доказали, что существует, пять и только пять правильных выпуклых многогранников. Доказательство того, что больше не может быть, содержится в «Началах» Эвклида, причем автором этого доказательства считается Теэтет. Известно, что в течение нескольких лет Теэтет состоял в Академии и был близок к Платону, и этой близостью можно объяснить то обстоятельство, что Платон оказался знакомым с новейшими в то время открытиями в области стереометрии.

4. Числовые характеристики Платоновых тел .

Основными числовыми характеристиками Платоновых тел является число сторон грани m, число граней n, сходящихся в каждой вершине, число граней Г , число вершин В, число ребер Р и число плоских углов У на поверхности многогранника (табл. 1).

Многогран-ник Число сторон грани, m Число граней, сходящихся в вершине, n

Число граней

Число вершин

Число ребер

Число плоских углов на поверхности

Тетраэдр 3 3 4 4 6 12
Гексаэдр (куб) 4 3 6 8 12 24
Октаэдр 3 4 8 6 12 24
Икосаэдр 3 5 20 12 30 60
Додекаэдр 5 3 12 20 30 60

Таблица 1. Числовые характеристики Платоновых тел.

Рассматривая табл. 1, зададимся вопросом: «нет ли закономерности в возрастании чисел в каждом столбцах граней, вершин и ребер?» По-видимому, нет. Вот в столбце «грани» все сначала пошло хорошо (4 + 2 = 6, 6 + 2 = 8), а потом намеченная закономерность «провалилась» (8 + 2 ). В столбце «вершины» нет даже стабильного возрастания. Число вершин то возрастает (от 4 до 8, от 6 до 20), а то и убывает (от 8 до 6, от 20 до 12). В столбце «ребра» закономерности тоже не видно.

Мы сравнивали числа внутри одного столбца. Но можно рассмотреть сумму чисел в двух столбцах, хотя бы в столбцах «грани» и «вершины» (Г + В). Сравним новую таблицу своих подсчетов (см. табл. 2).

Таблица 2

Вот теперь закономерность видна.

Сформулируем ее так: «Сумма числа граней и вершин равна числу ребер, увеличенному на 2»: Г + В = Р + 2 .

Формула Эйлера

Итак, получена формула, которая была подмечена уже Декартом в 1640 году, а позднее переоткрыта Эйлером (1752), имя которого с тех пор она и носит. Формула Эйлера верна для любых выпуклых многогранников.

Элементы симметрии:

Тетраэдр не имеет центра симметрии, но имеет 3 оси симметрии и 6 плоскостей симметрии.

Радиус описанной сферы:

Радиус вписанной сферы:

Площадь поверхности:

Объем тетраэдра:

Куб имеет центр симметрии - центр куба, 9 осей симметрии и 9 плоскостей симметрии.

Радиус описанной сферы:

Радиус вписанной сферы:

Площадь поверхности куба:

Объемкуба:

Октаэдр имеет центр симметрии - центр октаэдра, 9 осей симметрии и 9 плоскостей симметрии.

Радиус описанной сферы:

Радиус вписанной сферы:

Площадь поверхности:

Объем октаэдра:

Икосаэдр имеет центр симметрии - центр икосаэдра, 15 осей симметрии и 15 плоскостей симметрии.

Радиус описанной сферы:

,

Радиус вписанной сферы:

,

Площадь поверхности:

Объем икосаэдра:

.

Додекаэдр имеет центр симметрии - центр додекаэдра, 15 осей симметрии и 15 плоскостей симметрии.

Радиус описанной сферы:

,

Радиус вписанной сферы:

,

Площадь поверхности:

,

Объем додекаэдра:

.

5. Теория Кеплера.

В Европе в XYI – XYII вв. жил и творил замечательный немецкий астроном, математик и великий фантазер Иоганн Кеплер (1571-1630).

Кеплер действительно выступал в науке как астроном, математик и фантазер. Если бы в нем не было хотя бы одного из названных качеств, то он не смог бы достичь таких высот в науке.

На основе обобщения данных, полученных в результате наблюдений, он установил три закона движения планет относительно Солнца.

Первый закон : каждая планета движется по эллипсу, в одном из фокусов которого находится Солнце.

Второй закон : каждая планета движется в плоскости, проходящей через центр Солнца, причем площадь сектора орбиты, описанная радиус-вектором, изменяется пропорционально времени.

Третий закон : квадраты времени обращения планеты вокруг Солнца относятся, как кубы их средних расстояний от Солнца.

Но это были только гипотезы, пока их не объяснил и уточнил на основе закона всемирного тяготения Исаак Ньютон (1643-1727), создавший теорию движения небесных тел, которая доказала свою жизнеспособность тем, что с ее помощью люди научились предсказывать многие небесные явления.

Но представим себя на месте Кеплера. Перед ним различные таблицы–столбики цифр. Это результаты наблюдений – как его собственных, так и великих предшественников-астрономов. В этом море вычислительной работы человек хочет найти некоторую закономерность. Что поддерживает его в таком грандиозном замысле? Во-первых, вера в гармонию, уверенность в том, что мироздание устроено закономерно, а значит, законы его устройства можно обнаружить. А во-вторых, фантазия в сочетании с терпением и честностью. В самом деле, ну надо же от чего-то оттолкнуться! Искомые законы надо сначала придумать в собственной голове, а потом проверять их наблюдениями.

Сначала Кеплера соблазнила мысль о том, что существует всего, пять правильных многогранников и всего шесть (как казалось тогда) планет Солнечной системы: Меркурий, Венера, Земля, Марс, Юпитер, Сатурн. Показалось, что гармония мира и любовь природы к повторениям сделали правильные многогранники связующими звеньями между шестью небесными телами. Кеплер предположил, что сферы планет связаны между собой вписанными в них Платоновыми телами. Так как для каждого правильного многогранника центры вписанной и описанной сфер совпадают, то вся модель будет иметь единый центр, в котором располагается Солнце.

Кеплер выполнил огромную вычислительную работу, чтобы подтвердить свои предположения. В 1596 году он выпустил книгу, в которой они были изложены. Согласно этим предположениям, в сферу орбиты Сатурна можно вписать куб, в который вписывается сфера орбиты Юпитера. В нее, в свою очередь, вписывается тетраэдр, описанный около сферы орбиты Марса. В сферу орбиты Марса вписывается додекаэдр, в который вписывается сфера орбиты Земли. А она описана около икосаэдра, в который вписана сфера орбиты Венеры. Сфера этой планеты описана около октаэдра, в который вписывается сфера Меркурия. Такая модель Солнечной системы получила название «Космического кубка» Кеплера.

6. Задача о проверке космической теории Платоновых тел.

Можно проверить самим космическую теорию Платоновых тел. Рассмотрим задачу:

«Средние радиусы орбиты Сатурна и Юпитера равны соответственно Rс= 1, 427·10 9 км и Rю = 0,788 · 10 9 км. Найдите отношение радиусов орбит указанных планет и сравните найденное отношение с отношением радиусов описанной около куба и вписанной в него сфер».

Согласно гипотезе Кеплера эти отношения должны быть равны. Итак, из наблюдений имеем:

.

Согласно гипотезе в сферу орбиты Сатурна вписан куб, пусть его ребро равно а. Тогда радиус вписанной окружности равен половине диагонали вписанного куба, т.е. но и тогда . В этот куб вписана сфера (орбита Юпитера). Обозначим ее радиус через r. Он равен половине ребра куба, т.е. . Тогда .

Как видим, расхождение между теоретическим отношением R: r и наблюдаемым Rс: Rю не так уж и велико, менее 0,1. А для космических масштабов оно вроде бы и допустимо. Эти «почти совпадения» и заставляли Кеплера долго держаться за теорию платоновых тел, поскольку легко было заподозрить ошибку в наблюдениях.

Год за годом он уточнял свои наблюдения, перепроверял данные коллег, но, наконец, нашел в себе силы отказаться от заманчивой гипотезы. Однако ее следы просматриваются в третьем законе Кеплера, где говорится о кубах средних расстояний от Солнца.

Каким образом они могли появиться в сознании человека, если бы он не рассуждал об объеме пространственных тел? Ведь именно объем, как мы знаем, выражается кубами линейных размеров тел. Но это тоже гипотеза, гипотеза о том, как были найдены законы Кеплера. У нас нет возможности ее проверить, но мы твердо знаем одно: без гипотез, иногда самых неожиданных, казалось бы, бредовых, не может существовать наука.

7. Архимедовы тела

Полуправильные многогранники

Известно еще множество совершенных тел, получивших название полуправильных многогранников или Архимедовых тел. У них также все многогранные углы равны и все грани – правильные многоугольники, но несколько разных типов. Существует 13 полуправильных многогранников, открытие которых приписывается Архимеду.

Архимед (287 г. до н.э. – 212 г. до н.э)

Множество Архимедовых тел можно разбить на несколько групп. Первую из них составляют пять многогранников, которые получаются из Платоновых тел в результате их усечения. Усеченное тело – это тело с отрезанной верхушкой. Для Платоновых тел усечение может быть сделано таким образом, что и получающиеся новые грани и остающиеся части старых будут правильными многоугольниками. Таким путем могут быть получены пять Архимедовых тел: усеченный тетраэдр, усеченный гексаэдр (куб), усеченный октаэдр, усеченный додекаэдр и усеченный икосаэдр (Рис. 2).

(а) (б) (в)
(г) (д)

Рисунок 2. Архимедовы тела: (а) усеченный тетраэдр, (б) усеченный куб, (в) усеченный октаэдр, (г) усеченный додекаэдр, (д) усеченный икосаэдр

В своей Нобелевской лекции американский ученый Смолли, один из авторов экспериментального открытия фуллеренов, говорит об Архимеде (287-212 гг. до н.э.) как о первом исследователе усеченных многогранников, в частности, усеченного икосаэдра , правда, оговариваясь, что возможно Архимед присваивает себе эту заслугу и, возможно, икосаэдры усекали задолго до него. Достаточно упомянуть найденные в Шотландии и датированные около 2000 г. до н.э. сотни каменных предметов (по всей видимости, ритуального назначения) в форме сфер и различных многогранников (тел, ограниченных со всех сторон плоскими гранями), включая икосаэдры и додекаэдры. Оригинальная работа Архимеда, к сожалению, не сохранилась, и ее результаты дошли до нас, что называется, «из вторых рук». Во времена Возрождения все Архимедовы тела одно за другим были «открыты» заново. В конце концов, Кеплер в 1619 г. в своей книге «Мировая гармония» («Harmonice Mundi») дал исчерпывающее описание всего набора архимедовых тел - многогранников, каждая грань которых представляет собой правильный многоугольник, а все вершины находятся в эквивалентном положении (как атомы углерода в молекуле С 60). Архимедовы тела состоят не менее, чем из двух различных типов многоугольников, в отличие от 5 Платоновых тел , все грани которых одинаковы (как в молекуле С 20 , например).

Рисунок 3. Конструирование Архимедового усеченного икосаэдра
из Платонового икосаэдра

Итак, как же сконструировать Архимедов усеченный икосаэдр из Платонова икосаэдра ? Ответ иллюстрируется с помощью рис. 3. Действительно, как видно из Табл. 1, в любой из 12 вершин икосаэдра сходятся 5 граней. Если у каждой вершины отрезать (отсечь) 12 частей икосаэдра плоскостью, то образуется 12 новых пятиугольных граней. Вместе с уже имеющимися 20 гранями, превратившимися после такого отсечения из треугольных в шестиугольные, они составят 32 грани усеченного икосаэдра. При этом ребер будет 90, а вершин 60.

8. Золотая пропорция в додекаэдре и икосаэдре.

Додекаэдр и двойственный ему икосаэдр занимают особое место среди Платоновых тел . Прежде всего, необходимо подчеркнуть, что геометрия додекаэдра и икосаэдра непосредственно связана с золотой пропорцией . Действительно, гранями додекаэдра (Рис.1-д) являются пентагоны , т.е. правильные пятиугольники, основанные на золотой пропорции. Если внимательно посмотреть на икосаэдр (Рис.1-г), то можно увидеть, что в каждой его вершине сходится пять треугольников, внешние стороны которых образуют пентагон . Уже этих фактов достаточно, чтобы убедиться в том, что золотая пропорция играет существенную роль в конструкции этих двух Платоновых тел .

Но существуют более глубокие математические подтверждения фундаментальной роли, которую играет золотая пропорция в икосаэдре и додекаэдре . Известно, что эти тела имеют три специфические сферы. Первая (внутренняя) сфера вписана в тело и касается его граней. Обозначим радиус этой внутренней сферы через R i . Вторая или средняя сфера касается ее ребер. Обозначим радиус этой сферы через R m . Наконец, третья (внешняя) сфера описана вокруг тела и проходит через его вершины. Обозначим ее радиус через R c . В геометрии доказано, что значения радиусов указанных сфер для додекаэдра и икосаэдра , имеющего ребро единичной длины, выражается через золотую пропорцию t (Табл. 3).

R c R m R i
Икосаэдр
Додекаэдр

Таблица 3. Золотая пропорция в сферах додекаэдра и икосаэдра

Заметим, что отношение радиусов = одинаково, как для икосаэдра , так и для додекаэдра . Таким образом, если додекаэдр и икосаэдр имеют одинаковые вписанные сферы, то их описанные сферы также равны между собой. Доказательство этого математического результата дано в Началах Евклида.

В геометрии известны и другие соотношения для додекаэдра и икосаэдра , подтверждающие их связь с золотой пропорцией. Например, если взять икосаэдр и додекаэдр с длиной ребра, равной единице, и вычислить их внешнюю площадь и объем, то они выражаются через золотую пропорцию (Табл.4).

Таблица 4. Золотая пропорция во внешней площади и объеме

додекаэдра и икосаэдра.

Таким образом, существует огромное количество соотношений, полученных еще античными математиками, подтверждающих замечательный факт, что именно золотая пропорция является главной пропорцией додекаэдра и икосаэдра , и этот факт является особенно интересным с точки зрения так называемой «додекаэдро-икосаэдрической доктрины», которую мы рассмотрим ниже.

9. Что такое календарь?

Русская пословица гласит: «Время – око истории». Все, что существует во Вселенной: Солнце, Земля, звезды, планеты, известные и неизвестные миры, и все, что есть в природе живого и неживого, все имеет пространственно-временное измерение. Время измеряется путем наблюдения периодически повторяющихся процессов определенной длительности.

В основу измерения времени астрономия положила движение небесных тел, которое отражает три фактора: вращение Земли вокруг своей оси, обращение Луны вокруг Земли и движение Земли вокруг Солнца. От того, на каком из этих явлений основывается измерение времени, зависят и разные понятия времени. Астрономия знает звездное время, солнечное время, местное время, поясное время, декретное время, атомное время и т.д.

Солнце, как и все остальные светила, участвует в движении по небосводу. Кроме суточного движения, Солнце обладает так называемым годичным движением, а весь путь годичного движения Солнца по небосводу называется эклиптикой. Если, например, заметить расположение созвездий в какой-нибудь определенный вечерний час, а затем повторять это наблюдение через каждый месяц, то перед нами предстанет иная картина неба. Вид звездного неба изменяется непрерывно: каждому времени года свойственна своя картина вечерних созвездий и каждая такая картина через год повторяется. Следовательно, по истечении года Солнце относительно звезд возвращается на прежнее место.

Для удобства ориентировки в звездном мире астрономы разделили весь небосвод на 88 созвездий. Каждое из них имеет свое наименование. Из 88 созвездий особое место в астрономии занимают те, через которые проходит эклиптика. Эти созвездия, кроме собственных имен, имеют еще обобщенное название – зодиакальные (от греческого слова «zoop» - животное). Они представляют собой широко известные во всем мире символы (знаки) и аллегорические изображения, вошедшие в календарные системы.

Известно, что в процессе перемещения по эклиптике Солнце пересекает 13 созвездий. Однако астрономы сочли нужным разделить путь Солнца не на 13, а на 12 частей, объединив созвездия Скорпион и Змееносец в единое - под общим названием Скорпион (почему?).

Проблемами измерения времени занимается специальная наука, называемая хронологией. Она лежит в основе всех календарных систем, созданных человечеством. Создание календарей в древности являлось одной из важнейших задач астрономии.

Что же такое «календарь» и какие существуют системы календарей? Слово календарь происходит от латинского слова calendarium, что буквально означает «долговая книга»; в таких книгах указывались первые дни каждого месяца –календы, в которые в Древнем Риме должники платили проценты.

С древнейших времен в странах Восточной и Юго-Восточной Азии при составлении календарей большое значение придавали периодичности движения Солнца, Луны, а также Юпитера и Сатурна, двух гигантских планет Солнечной системы. Есть основание предполагать, что идея создания юпитерианского календаря с небесной символикой 12-летнего животного цикла связана с вращением Юпитера вокруг Солнца, который делает полный оборот вокруг Солнца примерно за 12 лет (11,862 года). С другой стороны вторая гигантская планета Солнечной системы – Сатурн делает полный оборот вокруг Солнца примерно за 30 лет (29, 458 года). Желая согласовать циклы движения гигантских планет, древние китайцы пришли к идее введения 60-летнего цикла Солнечной системы. В течение этого цикла Сатурн делает 2 полных обороты вокруг Солнца, а Юпитер - 5 оборотов.

При создании годичных календарей используются астрономические явления: смена дня и ночи, изменение лунных фаз и смена времен года. Использование различных астрономических явлений привело к созданию у различных народов трех типов календарей: лунные, основанные на движении Луны, солнечные, основанные на движении Солнца, и лунно-солнечные.

10. Структура египетского календаря

Одним из первых солнечных календарей был египетский, созданный в 4-м тысячелетии до н.э. Первоначально египетский календарный год состоял из 360 дней. Год делился на 12 месяцев ровно по 30 дней в каждом. Однако позже было обнаружено, что такая длительность календарного года не соответствует астрономическому. И тогда египтяне добавили к календарному году «хвостик» из 5 дней, которые однако не входили в состав месяцев. Это были 5 праздничных дней, соединявших соседние календарные годы. Таким образом, египетский календарный год имел следующую числовую структуру: 365 = 12ґ 30 + 5. Заметим, что именно египетский календарь является прообразом современного календаря.

Возникает вопрос: почему египтяне разделили календарный год на 12 месяцев? Ведь существовали календари с другим количеством месяцев в году. Например, в календаре майя год состоял из 18 месяцев по 20 дней в месяце. Следующий вопрос, касающийся египетского календаря: почему каждый месяц имел ровно 30 дней (точнее суток)? Можно поставить некоторые вопросы и по поводу египетской системы измерения времени, в частности по поводу выбора таких единиц времени, как час, минута, секунда. В частности, возникает вопрос: почему единица часа была выбрана таким образом, чтобы она ровно 24 раза укладывалась в сутки, то есть, почему 1 сутки = 24 (2ґ 12) часа? Далее: почему 1 час = 60 минут, а 1 минута = 60 секунд? Эти же вопросы относятся и к выбору единиц угловых величин, в частности: почему окружность разбита на 360°, то есть, почему 2p =360° =12ґ 30° ? К этим вопросам добавляются и другие, в частности: почему астрономы признали целесообразным считать, что существует 12 зодиакальных знаков, хотя на самом деле в процессе своего движения по эклиптике Солнце пересекает 13 созвездий? И еще один «странный» вопрос: почему вавилонская система счисления имела весьма необычное основание – число 60?

11. Связь египетского календаря с числовыми характеристиками додекаэдра.

Анализируя египетский календарь, а также египетские системы измерения времени и угловых величин, мы обнаруживаем, что в них с удивительным постоянством повторяются четыре числа: 12, 30, 60 и производное от них число 360 = 12ґ 30. Возникает вопрос: не существует ли какой-то фундаментальной научной идеи, которая могла бы дать простое и логичное объяснение использованию этих чисел в египетских системах?

Для ответа на это вопрос еще раз обратимся к додекаэдру, изображенному на Рис. 3.1-д. Напомним, что все геометрические соотношения додекаэдра основаны на золотой пропорции.

Знали ли египтяне додекаэдр? Историки математики признают, что древние египтяне обладали сведениями о правильных многогранниках. Но знали ли они все пять правильных многогранников, в частности додекаэдр и икосаэдр, как наиболее сложные из них? Древнегреческий математик Прокл приписывает построение правильных многогранников Пифагору. Но ведь многие математические теоремы и результаты (в частности Теорему Пифагора) Пифагор позаимствовал у древних египтян в период своей весьма длительной «командировки» в Египет (по некоторым сведениям Пифагор прожил в Египте в течение 22 лет!). Поэтому мы можем предположить, что знание о правильных многогранниках Пифагор, возможно, также позаимствовал у древних египтян (а возможно, у древних вавилонян, потому что согласно легенде Пифагор прожил в древнем Вавилоне 12 лет). Но существуют и другие, более веские доказательства того, что египтяне владели информацией о всех пяти правильных многогранниках. В частности, в Британском Музее хранится игральная кость эпохи Птоломеев, имеющая форму икосаэдра, то есть «Платонового тела», дуального додекаэдру. Все эти факты дают нам право выдвинуть гипотезу о том, что египтянам был известен додекаэдр. И если это так, то из этой гипотезы вытекает весьма стройная система, позволяющая дать объяснение происхождению египетского календаря, а заодно и происхождению египетской системы измерения временных интервалов и геометрических углов.

12. Гармония циклов Солнечной Системы.

Ранее мы установили, что додекаэдр имеет 12 граней (пентагонов), 30 ребер и 60 плоских углов на своей поверхности (Табл. 3.1). Если исходить из гипотезы, что египтяне знали додекаэдр и его числовые характеристики 5, 12, 30. 60, то каково же было их удивление, когда они обнаружили, что этими же числами выражаются циклы Солнечной системы, а именно, 12-летний цикл Юпитера, 30-летний цикл Сатурна и, наконец, 60-летний цикл Солнечной системы. При этом главный цикл Солнечной системы и цикл Юпитера связаны следующим числовым соотношением: 60 = 12ґ 5 (которое, кстати, совпадает с числовой структурой масштабной иерархии Вселенной!). Таким образом, между такой совершенной пространственной фигурой, как додекаэдр, и Солнечной системой, существует глубокая математическая связь! Такой вывод сделали античные ученые. Это и привело к тому, что додекаэдр был принят в качестве «главной фигуры», которая символизировала Гармонию Мироздания. И тогда египтяне решили, что все их главные системы (календарная система, система измерения времени, система измерения углов) должны соответствовать числовым параметрам додекаэдра! Поскольку по представлению древних движение Солнца по эклиптике имело строго круговой характер, то, выбрав 12 знаков Зодиака, дуговое расстояние между которыми равнялось ровно 30°, египтяне удивительно красиво согласовали годичное движение Солнца по эклиптике со структурой своего календарного года: один месяц соответствовал перемещению Солнца по эклиптике между двумя соседними знаками Зодиака! Более того, перемещение Солнца на один градус соответствовало одному дню в египетском календарном году! При этом эклиптика автоматически получалась разделенной на 360°. Разделив каждые сутки на две части, следуя додекаэдру, египтяне затем каждую половину суток разделили на 12 частей (12 граней додекаэдра) и тем самым ввели час – важнейшую единицу времени. Разделив один час на 60 минут (60 плоских углов на поверхности додекаэдра), египтяне таким путем ввели минуту – следующую важную единицу времени. Точно также они ввели секунду – наиболее мелкую на тот период единицу времени.

Таким образом, выбрав додекаэдр в качестве главной «гармонической» фигуры мироздания, и строго следуя числовым характеристикам додекаэдра 12, 30, 60, египтянам удалось построить чрезвычайно стройный календарь, а также системы измерения времени и угловых величин, которые существуют до настоящего времени! Эти системы полностью согласовывалась с их «Теорией Гармонии», которая, по некоторым сведениям, существовала у древних египтян. Эта теория была основана на золотой пропорции и возникла задолго до возникновения греческой науки и математики.

Вот такие удивительные выводы вытекают из сопоставления додекаэдра с Солнечной системой. И если наша гипотеза правильна (пусть кто-нибудь попытается ее опровергнуть), то отсюда следует, что вот уже много тысячелетий человечество живет под знаком золотого сечения! И каждый раз, когда мы смотрим на циферблат наших часов, который также построен на использовании числовых характеристик додекаэдра 5,12, 30 и 60, мы прикасаемся к главной «Тайне Мироздания» - золотому сечению, сами того не подозревая!

13. О календаре и системе счисления майя.

Известно, что календарный год в календаре майя имел следующую числовую структуру: 1 год = 360 + 5 = 20ґ 18 + 5 дней, откуда вытекает, что год майя разделили на 18 месяцев по 20 дней в каждом. Числа 20 и 360 были использованы майя в качестве «узловых» чисел своей системы счисления. Однако по своей структуре календарный год майя был подобен структуре египетского календарного года: 1 год = 360 + 5 = 12ґ 30 + 5 дней, в котором числа 12 и 30 были числами додекаэдра. Но что такое число 20 в календаре майя? Обратимся снова к икосаэдру и додекаэдру. В этих «сакральных» фигурах имеется еще одна «священная» числовая характеристика – число вершин, которое одно и то же для додекаэдра и икосаэдра и равно числу 20! Таким образом, древние майя, несомненно, использовали эту числовую характеристику додекаэдра и икосаэдра в своем календаре (разделив год на 20 месяцев) и в своей системе счисления (выбрав числа 20 и 360 в качестве «узловых» чисел своей системы счисления).

Согласно замечанию комментатора последнего издания сочинений Платона, у него «вся космическая пропорциональность покоится на принципе золотого деления, или гармонической пропорции». Как упоминалось, космология Платона основывается на правильных многогранниках, называемых телами Платона. Представление о «сквозной» гармонии мироздания неизменно ассоциировалось с ее воплощением в этих пяти правильных многогранниках, выражавших идею повсеместного совершенства мира. И то, что главная «космическая» фигура - додекаэдр, символизировавший тело мира и вселенской души, был основан на золотом сечении, придавало последнему особый смысл, смысл главной пропорции мироздания.

Космология Платона стала основой, так называемой икосаэдро-додекаэдрической доктрины, которая с тех пор красной нитью проходит через всю человеческую науку. Суть этой доктрины состоит в том, что додекаэдр и икосаэдр есть типичные формы природы во всех ее проявлениях, начиная с космоса и заканчивая микромиром.

Вопрос о форме Земли постоянно занимал умы ученых античных времен. И когда гипотеза о шарообразной форме Земли получила подтверждение, возникла идея о том, что по своей форме Земля представляет собой додекаэдр. Так, уже Сократ писал: «Земля, если взглянуть на нее сверху, похожа на мяч, сшитый из 12 кусков кожи».

Эта гипотеза Сократа нашла дальнейшее научное развитие в трудах физиков, математиков и геологов. Так, французский геолог де Бимон и известный математик Пуанкаре считали, что форма Земли представляет собой деформированный додекаэдр.

Российский геолог С. Кислицин, также разделял мнение о додекаэдрической форме Земли. Он высказал гипотезу о том, что 400-500 млн. лет назад геосфера додекаэдрической формы превратилась в гео-икосаэдр. Однако такой переход оказался неполным и незавершенным, в результате чего гео-додекаэдр оказался вписанным в структуру икосаэдра.

Недавно московские инженеры В. Макаров и В. Морозов выдвинули еще одну интересную гипотезу, касающуюся формы Земли. Они считают, что ядро Земли имеет форму и свойства растущего кристалла, оказывающего воздействие на развитие всех природных процессов, идущих на планете. Лучи этого кристалла, а точнее, его силовое поле, обусловливают икосаэдро-додекаэдрическую структуру Земли, проявляющуюся в том, что в земной коре как бы проступают проекции вписанных в земной шар правильных многогранников: икосаэдра и додекаэдра. Их 62 вершины и середины ребер, называемых авторами узлами, обладают рядом специфических свойств, позволяющих объяснить некоторые непонятные явления.

В последние годы гипотеза об икосаэдро-додекаэдрической форме Земли была подвергнута проверке. Для этого ученые совместили ось додекаэдра с осью глобуса и, вращая вокруг нее этот многогранник, обратили внимание на то, что его ребра совпадают с гигантскими нарушениями земной коры (например, с Срединно-Атлантическим подводным хребтом). Взяв затем икосаэдр в качестве многогранника, они установили, что его ребра совпадают с более мелкими членениями земной коры (хребты, разломы и т.д.). Эти наблюдения подтверждают гипотезу о близости тектонического строения земной коры с формами додекаэдра и икосаэдра.Узлы гипотетического гео-кристалла являются как бы центрами определенных аномалий на планете: в них расположены все мировые центры экстремального атмосферного давления, районы зарождения ураганов; в одном из узлов икосаэдра (в Габоне) обнаружен «природный атомный реактор», еще работавший 1,7 млрд. лет назад. Ко многим узлам многогранников приурочены гигантские месторождения полезных ископаемых (например, Тюменское месторождение нефти), аномалии животного мира (оз. Байкал), центры развития культур человечества (Древний Египет, протоиндийская цивилизация Мохенджо-Даро, Северная Монгольская и т.п.). Все эти примеры подтверждают удивительную прозорливость интуиции Сократа.

Квинтэссенцией геометрических представлений о всем сущем стали работы американского исследователя Д. Винтера, возглавляющего группу «Планетарные сердцебиения». Он является проповедником идеала формы, унитарного «золотого сечения», которое подобно «золотой цепи» соединяют ген и Вселенную. Принимая концепцию икосаэдрически-додекаэдрической формы Земли, Винтер развивает ее дальше. Он обращает внимание на то, что угол, описываемый осью вращения Земли в ходе ее прецессии за 26 000 лет, составляет 32°. Это в точности равно тому углу, под которым можно наклонить куб, чтобы, вращая его затем вокруг оси (с пятью остановками), получить додекаэдр. По мнению Винтера, энергетический каркас Земли представляет собой додекаэдр, вставленный в икосаэдр, который, в свою очередь, вставлен во второй додекаэдр. Геометрические отношения между указанными многогранниками представляет собой золотое сечение.

Додекаэдрическая структура, по мнению Винтера, присуща не только энергетическому каркасу Земли, но и строению живого вещества. И самое, пожалуй, главное, что структура ДНК генетического кода жизни представляет собой четырехмерную развертку (по оси времени) вращающегося додекаэдра! Таким образом, оказывается, что вся Вселенная – от Метагалактики и до живой клетки – построена по одному принципу – бесконечно вписываемых друг в друга додекаэдра и икосаэдра, находящихся между собой в пропорции золотого сечения!

А вот еще одно подтверждение плодотворности додекаэдро-икосаэдрической доктрины в астрономии, приведенное в статье Валерия Шихирина «Перспективы развития торовых технологий, эластической механики и «чудеса», сотворяемые ими в природе». Согласно утверждению Шихирина, «все «жидкие» звезды и планеты, типа Солнца, Юпитера, Сатурна и т.п., формировались в сверххолодной зоне/очаге деформации звездопрокатного стана галактики в правильные многогранники, будучи замерзшими. При поступательном перемещении выворачиванием природного эластичного тороида-галактики в теплую зону, эти звезды и планеты оттаивали, то есть становились жидкими, по крайней мере, на поверхности, и заливали грани многогранника вместе с его ребрами. Япет - спутник Сатурна, не имеет атмосферы, не растаял, ввиду недостаточности температуры для его оттаивания (химический состав). То есть он имеет твердую глазуревую поверхность-лысину, с которой всю пыль, если она была, просто сдуло в космическое пространство и Япет остался «в чем мать-Галактика родила», то есть правильным многогранником - додекаэдром. Более того, на поверхности Япета (Рис. 3, внизу в середине) хорошо видна так называемая «линия Мажино», точно по экватору опоясывающий планету горный хребет, как бы делящий ее на две равные части. Это ничто иное как заусенец (грат, облой, рубчик, залив, выступ) – избыточный материал, выдавленный при поперечно-винтовой прокатке через зазор между ребордами валков».

Рис. 3. Спутник Юпитера Япет имеет форму додекаэдра

15. Роль икосаэдра в развитии математики.

Имя выдающегося геометра Феликса Клейна широко известно в науке. Основные работы Клейна посвящены неевклидовой геометрии, теории непрерывных групп, теории алгебраических уравнений, теории эллиптических функций, теории автоморфных функций. Свои идеи в области геометрии Клейн изложил в работе «Сравнительное рассмотрение новых геометрических исследований» (1872), известной под названием Эрлангенская программа. Кроме Эрлангенской программы и других выдающихся математических достижений, гениальность Феликса Клейна проявилась также в том, что 100 лет назад он сумел предсказать выдающуюся роль Платоновых тел, в частности, икосаэдра, в будущем развитии науки, в частности, математики. В 1884 г. (запомним этот год) Феликс Клейн опубликовал еще одну книгу «Лекции об икосаэдре и решении уравнений пятой степени», посвященную геометрической теории икосаэдра.

Как известно, икосаэдр (а вместе с ним двойственный к нему додекаэдр) занимают особое место в «живой» природе; форму икосаэдра имеют некоторые вирусы и радиолярии, то есть, икосаэдральная форма и пентагональная симметрия являются фундаментальными в организации живого вещества.

В первой части книги определено и объяснено место икосаэдра в математике. Согласно Ф. Клейну, ткань математики широко и свободно разбегается листами отдельных теорий. Но есть объекты, в которых сходятся несколько листов, - своеобразные точки ветвления. Их геометрия связывает листы и позволяет охватить общематематический смысл разных теорий. Именно таким математическим объектом, по мнению Клейна, является икосаэдр. Клейн трактует икосаэдр как математический объект, из которого расходятся ветви пяти математических теорий: геометрия, теория Галуа, теория групп, теория инвариантов и дифференциальные уравнения.

Таким образом, главная идея Клейна чрезвычайно проста: «каждый уникальный геометрический объект, так или иначе, связан со свойствами икосаэдра».

В чем же состоит значение идей выдающегося математика с точки зрения теории гармонии? Прежде всего, в качестве объекта, объединяющего «главные листы» математики выбрано «тело Платона» - икосаэдр, основанный на золотом сечении. Отсюда естественным образом вытекает мысль, что именно Золотое Сечение и является той главной геометрической идеей, которая, согласно Клейну, может объединить всю математику.

Современники Клейна не сумели по достоинству понять и оценить революционный характер «икосаэдрической» идеи Клейна. Ее значение было понято ровно через 100 лет, то есть только в 1984 г., когда израильский физик Дан Шехтман опубликовал заметку, подтверждающую существование специальных сплавов (названных квазикристаллами), обладающих так называемой «икосаэдрической» симметрией, то есть симметрией 5-го порядка, что строго запрещено классической кристаллографией.

Таким образом, еще в 19-м веке гениальная интуиция Феликса Клейна привела его к мысли о том, что одна из древнейших геометрических фигур – икосаэдр – является главной геометрической фигурой математики. Тем самым Клейн в 19 в. вдохнул новую жизнь в развитие «додекаэдро-икосаэдрического представления» о структуре Вселенной, последователями которого были великие ученые и философы: Платон, построивший свою космологию на основе правильных многогранников, Евклид, посвятивший свои «Начала» изложению теории Платоновых тел, Иоганн Кеплер, использовавший Платоновы тела при создании своего Космического кубка, весьма оригинальной геометрической модели Солнечной системы.

16. Правильные многогранники вокруг нас.

Рассуждая об устройстве мира, нельзя оставить без внимания живую природу. Встречаются ли в живой природе правильные многогранники?

1. Правильные многогранники встречаются и в живой природе. Например, скелет одноклеточного организма феодарии (Circogoniaicosahedra) по форме напоминает икосаэдр. Большинство феодарий живут на морской глубине и служат добычей коралловых рыбок. Но простейшее животное пытается себя защитить: из 12 вершин скелета выходят 12 полых игл. На концах игл находятся зубцы, делающие иглу еще более эффективной при защите.

Чем же вызвана такая природная геометризация феодарий? Тем, по-видимому, что из всех многогранников с тем же числом граней именно икосаэдр имеет наибольший объем при наименьшей площади поверхности. Это свойство помогает морскому организму преодолевать давление водной толщи.

2. Интересно, что икосаэдр оказался в центре внимания биологов в их спорах относительно формы некоторых вирусов. Вирус не может быть совершенно круглым, как считалось раньше. Для того чтобы определить его форму, брали разные многогранники, направляли на них свет под теми же углами, что и поток атомов на вирус. Оказалось, что только один многогранник дает точно такую же тень – икосаэдр. Его геометрические свойства позволяют экономить генетическую информацию. Правильные многогранники - самые выгодные фигуры. И природа этим широко пользуется. Кристаллы некоторых знакомых нам веществ имеют форму правильных многогранников. Так, куб передает форму кристаллов поваренной соли NaCl, монокристалл алюминиево-калиевых квасцов имеет форму октаэдра, кристалл сернистого колчедана FeS имеет форму додекаэдра, сурьменистый сернокислый натрий - тетраэдра, бор - икосаэдра.

3. Правильные многогранники – самые выгодные фигуры. И природа этим широко пользуется. Подтверждением тому служит форма некоторых кристаллов. Взять хотя бы поваренную соль , без которой мы не можем обойтись. Известно, что она хорошо растворима в воде, служит проводником электрического тока. А кристаллы поваренной соли (NaCl) имеют форму куба.

4. При производстве алюминия пользуются алюминиево-калиевыми квасцами (K·12H 2 O), монокристалл которых имеет форму правильного октаэдра.

5. Получение серной кислоты, железа, особых сортов цемента не обходится без сернистого колчедана (FeS). Кристаллы этого химического вещества имеют форму додекаэдра.

6. В разных химических реакциях применяется сурьмянистый сернокислый натрий (Na 5 (SbO 4 (SO 4)) – вещество, синтезированное учеными. Кристалл сурьмянистого сернокислого натрия имеет форму тетраэдра.

7. Последний правильный многогранник – икосаэдр передает форму кристаллов бора (B). В свое время бор использовался для создания полупроводников первого поколения.

Благодаря правильным многогранникам, открываются не только удивительные свойства геометрических фигур, но и пути познанияприродной гармонии.

Инте ресная научная гипотеза, авторами которой (в начале 80-х годов) явились московские инженеры В. Макаров и В. Морозов. Они считают, что ядро Земли имеет форму и свойства растущего кристалла, оказывающего воздействие на развитие всех природных процессов, идущих на планете. Лучи этого кристалла, а точнее, его силовое поле, обусловливают икосаэдро-додекаэдрическую структуру Земли, проявляющуюся в том, что в земной коре как бы проступают проекции вписанных в земной шар правильных многогранников: икосаэдра и додекаэдра. Их 62 вершины и середины ребер, называемых авторами узлами, обладают рядом специфических свойств, позволяющих объяснить некоторые непонятные явления.

Если нанести на глобус очаги наиболее крупных и примечательных культур и цивилизаций Древнего мира, можно заметить закономерность в их расположении относительно географических полюсов и экватора планеты. Многие залежи полезных ископаемых тянутся вдоль икосаэдрово-додекаэдровой сетки. Еще более удивительные вещи происходят в местах пересечения этих ребер: тут располагаются очаги древнейших культур и цивилизаций: Перу, Северная Монголия, Гаити, Обская культура и другие. В этих точках наблюдаются максимумы и минимумы атмосферного давления, гигантские завихрения Мирового океана, здесь шотландское озеро Лох-Несс, Бермудский треугольник. Дальнейшие исследования Земли, возможно, определят отношение к этой красивой научной гипотезе, в которой, как видно, правильные многогранники занимают важное место.

Заключение.

В ходе работы над рефератом мы изучили правильные многогранники, рассмотрели их модели, выделили и систематизировали свойства каждого из многогранников. Кроме этого мы узнали, что правильные многогранники с древних времен привлекали внимание ученых, строителей, архитекторов и многих других. Их поражала красота, совершенство, гармония этих многогранников. Пифагорейцы считали эти многогранники божественными и использовали их в своих философских сочинениях о существе мира. Подробно описал свойства правильных многогранников древнегреческий ученый Платон. Правильным многогранникам посвящена последняя XIII книга знаменитых «Начал» Евклида. К многогранникам обращались и в более позднее время. Это видно из научных трудов Иоганна Кеплера.

Стахов А.П. Додекаэдр, тайна Египетского календаря, циклы Солнечной Системы и «Арифметика Вселенной» // «Академия Тринитаризма», М., Эл № 77-6567, публ.13065, 10.03.2006

Человек проявляет интерес к многогранникам на протяжении всей своей сознательной деятельности – от двухлетнего ребёнка, играющего деревянными кубиками, до зрелого математика. Особый интерес к правильным многоугольникам и правильным многогранникам связан с красотой и совершенством формы. Они довольно часто встречаются в природе. Достаточно вспомнить форму снежинок, граней кристаллов, ячеек в пчелиных сотах. Из правильных многоугольников можно складывать не только плоские фигуры, но и пространственные.

Древними греками исследовались также и многие геометрические свойства платоновых тел; (с плодами их изысканий можно ознакомиться по 13-й книге Начал Евклида ((см. также ГЕОМЕТРИЯ)). Изучение платоновых тел и связанных с ними фигур продолжается и поныне. И хотя основными мотивами современных исследований служат красота и симметрия, они имеют также и некоторое научное значение, особенно в кристаллографии. Кристаллы поваренной соли, тиоантимонида натрия и хромовых квасцов встречаются в природе в виде куба, тетраэдра и октаэдра соответственно. Икосаэдр и додекаэдр среди кристаллических форм не встречаются, но их можно наблюдать среди форм микроскопических морских организмов, известных под названием радиолярий.

Звёздчатый многогранник - это правильный невыпуклый многогранник. Многогранники из-за их необычных свойствсимметрии исследуются с древнейших времён. Также формы многогранников широко используются в декоративном искусстве.

Звездчатые многогранники очень декоративны, что позволяет широко применять их в ювелирной промышленности при изготовлении всевозможных украшений. Применяются они и в архитектуре. Многие формы звездчатых многогранников подсказывает сама природа. Снежинка - это звездчатые многогранники. С древности люди пытались описать все возможные типы снежинок, составляли специальные атласы. Сейчас известно несколько тысяч различных типов снежинок. Есть много видов звёздчатых многогранников.

Тетраэдр

(от греческого tetra – четыре и hedra – грань)

Простейшим многогранником является Тетраэдр. Здесь нам потребуется продолжить не рёбра, а грани многогранника. Однако четыре плоскости - продолжения граней тетраэдра - ограничивают лишь ту часть трёхмерного пространства, которая совпадает с исходным телом. Шесть плоскостей куба попарно параллельны и взаимно перпендикулярны, подобно сторонам двумерного аналога куба - квадрата. Поэтому и в трёхмерном случае к кубу не добавляется новых частей. Но уже случай октаэдра даёт интересные результаты. Восемь плоскостей - продолжения граней октаэдра - отделяют от пространства новые части, так сказать, «отсеки», внешние по отношению к октаэдру. Вы обнаружите, что эти части суть не что иное, как малые тетраэдры, основания которых совпадают с гранями октаэдра. Если вы теперь мысленно присоедините эти части к октаэдру таким образом, чтобы их общие с октаэдром грани исчезли, оставив нутро нового тела полым, перед вашим взором возникнет невыпуклый многогранник.

Звёздчатый октаэдр

(от греческого octo – восемь и hedra – грань)

Был открыт Леонардо Да Винчи, затем спустя почти 100 лет переоткрыт И.Кеплером, и назван им «Stella octangula» – звезда восьмиугольная. Отсюда октаэдр имеет и второе название «stella octangula Кеплера».

Октаэдр имеет 6 вершин и 12 рёбер. На примере октаэдра можно проверить формулу Эйлера 6в+8г-12р=2. В каждой вершине сходятся 4 треугольника, таким образом, сумма плоских углов при вершине октаэдра составляет 240 °.Из определения правильного многогранника следует, что все ребра октаэдра имеют равную длину, а грани - равную площадь.

Кристаллы алмаза представляют собой гигантские полимерные молекулы и обычно имеют форму октаэдров

Большой звёздчатый додекаэдр

Большой звездчатый додекаэдр принадлежит к семейству тел Кеплера-Пуансо, то есть правильных невыпуклых многогранников. Грани большого звездчатого додекаэдра – пентаграммы, как и у малого звездчатого додекаэдра. У каждой вершины соединяются три грани. Вершины большого звездчатого додекаэдра совпадают с вершинами описанного додекаэдра.Большой звездчатый додекаэдр был впервые описан Кеплером в 1619 г. Это последняя звездчатая форма правильного додекаэдра.

Правильный многогранник, составленный из 12 равносторонних пятиугольников. Додекаэдр имеет 20 вершин и 30 ребер . Вершина додекаэдра является вершиной трех пятиугольников, таким образом, сумма плоских углов при каждой вершине равна 324°.

В алхимии обычно говорится только об этих элементах: огонь, земля, воздух и вода; редко упоминается эфир, потому что это настолько священно. В Пифагорейской школе, стоило бы вам только лишь упомянуть за стенами школы слово «додекаэдр», как вас убили бы на месте. Настолько священной считалась эта фигура. О ней даже не говорили. Спустя двести лет, при жизни Платона, о ней говорили, но только очень осторожно. Почему? Потому, что додекаэдр расположен у внешнего края вашего энергетического поля и является высшей формой сознания. Когда вы достигаете 55-футового предела своего энергетического поля, то оно будет иметь форму сферы. Но самая близкая к сфере внутренняя фигура – это додекаэдр (в действительности, додекаэдро-икосаэдральная взаимосвязь). Вдобавок к этому, мы живём внутри большого додекаэдра, который содержит в себе вселенную. Когда ваш ум достигает предела пространства космоса – а предел тут есть – то он натыкается на додекаэдр, замкнутый в сфере. Додекаэдр есть завершающая фигура геометрии и она очень важна

В основе структуры ДНК лежит священная геометрия, хотя, могут обнаружиться ещё и другие скрытые взаимосвязи. В книге Дана Уинтера «Математика Сердца» (Dan Winter, Heartmath) показано, что молекула ДНК составлена из взаимоотношений двойственности додекаэдров и икосаэдров.

Звёздчатый икосаэдр

Икосаэдр имеет двадцать граней. Если каждую из них продолжить неограниченно, то тело будет окружено великим многообразием отсеков – частей пространства, ограниченных плоскостями граней. Все звездчатые формы икосаэдра можно получить добавлением к исходному телу таких отсеков. Не считая самого икосаэдра, продолжения его граней отделяют от пространства 20+30+60+20+60+120+ 12+30+60+60 отсеков десяти различных форм и размеров. Большой икосаэдр (см. рис) состоит из всех этих кусков, за исключением последних шестидесяти.

Правильный выпуклый многогранник, составленный из 20 правильных треугольников. Каждая из 12 вершин икосаэдра является вершиной 5 равносторонних треугольников, поэтому сумма углов при вершине равна 300° .

В природе встречаются объекты, обладающие симметрией 5-го порядка. Известны, например, вирусы, содержащие кластеры в форме икосаэдра . Открытие фуллерена, молекула которого С60 также обладает этим типом симметрии, стимулировало интерес к подобным объектам. Г.Хуберт с сотрудниками (H.Hubert; Аризонский университет, США) синтезировали кристаллы B6 O из смеси B и B2 O3, которая выдерживалась при температуре 1700o С и давлении от 4 до 5.5 ГПа в течение 30 мин. Образовавшийся субоксид бора имеет ромбоэдрическую кристаллическую решетку с одним из плоских углов при вершине, равным 63.1o. Это значение очень близко к величине угла 63.4o, необходимого для того, чтобы из 20 тетраэдров можно было составить правильный икосаэдр . Первичные икосаэдры способны группироваться в более крупные кластеры: центральный икосаэдр окружен 12 такими же частицами, центры которых лежат в вершинах более крупного икосаэдра второго порядка. Число атомов в таком сверхкластере может достигать 1014. Икосаэдричесий кластер имеет размер около 15 мкм. Этот продукт синтеза не может считаться монокристаллом, так как не имеет периодической кристаллической решетки. Малая плотность таких частиц при твердости, близкой к твердости алмаза, и высокая химическая стойкость делают их перспективными в создании новых материалов для техники.

Тела Кеплера – Пуансо

Два тетраэдра, прошедших один сквозь другой, образуют восьмигранник. Иоганн Кеплер присвоил этой фигуре имя «стелла октангула» -«восьмиугольная звезда».
Она встречается и в природе: это так называемый двойной кристалл . Мы вынуждены признать «стеллу октангулу» правильным многогранником: ведь все ее грани - правильные треугольники одинакового размера и все углы между ними равны! Что же это - шестое Платоново тело?! Нет, просто удавшаяся провокация.

В определении правильного многогранника сознательно - в расчете на кажущуюся очевидность - не было подчеркнуто слово «выпуклый». А оно означает дополнительное требование: «и все грани, которого лежат по одну сторону от плоскости, проходящей через любую из них». Если же отказаться от такого ограничения, то к Платоновым телам, кроме «продолженного октаэдра», придется добавить еще четыре многогранника (их называют телами Кеплера - Пуансо), каждый из которых будет «почти правильным». Все они получаются «озвездыванием» Платонова тела, то есть продлением его граней до пересечения друг с другом, и потому называются звездчатыми. Куб и тетраэдр не порождают новых фигур - грани их, сколько ни продолжай, не пересекаются.

Если же продлить все грани октаэдра до пересечения их друг с другом, то получится фигура, что возникает при взаимопроникновении двух тетраэдров - «стелла октангула», которая называется «продолженным октаэдром».

Икосаэдр и додекаэдр дарят миру сразу четыре «почти правильных многогранника». Один из них - малый звездчатый додекаэдр , полученный впервые Иоганном Кеплером.

Столетиями математики не признавали за всякого рода звездами права называться многоугольниками из-за того, что стороны их пересекаются. А тут - геометрическое тело, гранями которого служат пятиконечные звезды, да еще вдобавок пересекающиеся! Какой же это многогранник?! Людвиг Шлефли не изгонял геометрическое тело из семейства многогранников только за то, что его грани самопересекаются, тем не менее, оставался непреклонным, как только речь заходила про малый звездчатый додекаэдр. Довод его был прост и весом: это кеплеровское животное не подчиняется формуле Эйлера! Его колючки образованы двенадцатью гранями, тридцатью ребрами и двенадцатью вершинами, и, следовательно, В+Г-Р вовсе не равняется двойке.

Шлефли был и прав, и не прав. Конечно же, геометрический ежик не настолько уж колюч, чтобы восстать против непогрешимой формулы. Надо только не считать, что он образован двенадцатью пересекающимися звездчатыми гранями, а взглянуть на него как на простое, честное геометрическое тело, составленное из 60 треугольников, имеющее 90 ребер и 32 вершины.

Тогда В+Г-Р=32+60-90 равно, как и положено, 2. Но зато тогда к этому многограннику неприменимо слово «правильный» - ведь грани его теперь не равносторонние, а всего лишь равнобедренные треугольники. Кеплер не додумался, что у полученной им фигуры есть двойник. Многогранник, который называется «большой додекаэдр » - построил французский геометр Луи Пуансо спустя двести лет после кеплеровских звездчатых фигур.

Большой икосаэдр был впервые описан Луи Пуансо в 1809 году. И опять Кеплер, увидев большой звездчатый додекаэдр , честь открытия второй фигуры оставил Луи Пуансо. Эти фигуры также наполовину подчиняются формуле Эйлера.

На гравюре Маурица Эсхера «Порядок и хаос» звездчатый додекаэдр , символ математической красоты и порядка, окружен прозрачной сферой. В ней отражена бессмысленная коллекция бесполезных вещей. Красота звездчатых фигур находит на удивление мало места в нашей жизни: разве что светильники, да и то очень редко. Даже изготовители елочных украшений не додумались сделать трехмерные звезды, а ими как раз и оказались бы эти многогранники.

Михайлова Полина Когай Юля

Целью

Скачать:

Предварительный просмотр:

ПРОЕКТ

(статья по математике)

Выполнили:

Ученицы 11 класса

Михайлова Полина

Когай Юля

Руководитель:

Учитель математики

Лебедева Ирина Николаевна

РЖЕВ 2012

(Л.Кэрролл)

Введение

Целью нашего исследования являлось изучение правильных многогранников, их видов, свойств.

1. Правильные многогранники

Рис.1.

2. Свойства многогранников

В дословном переводе с

Евклид

Платон и Платоновы тела

Многогранники

земля/вода = воздух/огонь .

Многогранник

Число сторон грани

Число граней

Число рёбер

Число вершин

Тетраэдр

Куб

Октаэдр

Икосаэдр

Додекаэдр

Архимед Сиракузский

квазиправильными

ромбокубооктаэдром и ромбоикосододекаэдром

Заключение


Предварительный просмотр:

МОУ СОШ №1 г.Ржева Тверской обл

ПРОЕКТ

Правильные многогранники вокруг нас

(статья по математике)

Выполнили:

Ученицы 11 класса

Михайлова Полина

Когай Юля

Руководитель:

Учитель математики

Лебедева Ирина Николаевна

РЖЕВ 2012

Правильных многогранников вызывающе мало,

но этот весьма скромный по численности отряд

сумел пробраться в самые глубины различных наук.

(Л.Кэрролл)

Введение

Есть в школьной геометрии особые темы, которые ждешь с нетерпением,

предвкушая встречу с невероятно красивым материалом. К таким темам можно отнести "Правильные многогранники". Здесь не только открывается

удивительный мир геометрических тел, но и неповторимые свойства, особенности которых вызывают споры у ученых и философов.

В течение всей жизни человек тесно связан с многогранниками. Несмотря на отсутствие знания таких сложных терминов, как «тетраэдр», «октаэдр», «додекаэдр» и др., он уже с самого раннего детства испытывает интерес к этим уникальным фигурам. Ведь суть «кубиков» - одной из самых популярных детских игр - состоит в том, чтобы построить из многогранников объект.

На протяжении многих веков людей словно притягивают эти тела. Древние египтяне строили гробницы своим фараонам (которых они считали полубогами) в форме тетраэдра, что еще раз подчеркивает величие и этих фигур.

Но не только руками человека создаются эти загадочные тела. Одни из правильных тел встречаются в природе в виде кристаллов, другие – в виде вирусов (были обнаружены учеными с помощью электрического микроскопа). А биологи говорят о том, что шестиугольные соты пчел, содержащие мед, имеют форму правильного многогранника. Существовала гипотеза, что именно правильная шестиугольная форма сот помогает сохранить полезные свойства этого ценного продукта.

Так что же представляют собой эти столь совершенные тела?

Целью нашего исследования являлось изучение правильных многогранников, их видов, свойств.

В задачи нашего исследования входило:

  • Дать понятие правильных многогранников (на основе определения многогранников).
  • Доказать существование только 5 типов правильных многогранников.
  • Рассмотреть свойства правильных многогранников.
  • Познакомиться с интересными историческими фактами, связанными с правильными многогранниками.
  • Ознакомление с историей изучения многогранников.
  • Показать, как можно с помощью куба построить другие виды правильных многогранников.
  • Рассмотреть связь правильных многогранников с природой.

1. Правильные многогранники

Многогранник – это часть пространства, ограниченная совокупностью конечного числа плоских многоугольников, соединённых таким образом, что каждая сторона любого многогранника является стороной ровно одного многоугольника. Многоугольники называются гранями, их стороны – рёбрами, а вершины – вершинами.

Правильным называется многогранник, у которого все грани это правильные многоугольники и все многогранные углы при вершинах равны.

Всего существует пять многогранников - ни больше ни меньше. Подтвердить это можно с помощью развертки выпуклого многогранного угла. В самом деле, для того чтобы получить какой-нибудь правильный многогранник согласно его определению, в каждой вершине должно сходиться одинаковое количество граней, каждая из которых является правильным многоугольником. Сумма плоских углов многогранного угла должна быть меньше 360 о , иначе никакой многогранной поверхности не получится.

Перебирая возможные целые решения неравенств: 60к

Рис.1.

2. Свойства многогранников

Тетраэдр - составлен из четырёх равносторонних треугольников. Каждая его вершина является вершиной трёх треугольников и в каждой вершине сходится по три ребра и по три грани. Следовательно, сумма плоских углов при каждой вершине равна 180º. У тетраэдра: 4 грани, 4 вершины и 6 ребер.

Октаэдр - составлен из восьми равносторонних треугольников. Каждая вершина октаэдра является вершиной четырёх треугольников и в каждой вершине сходится по четыре ребра и по четыре грани. Следовательно, сумма плоских углов при каждой вершине 240º. У октаэдра: 8 граней, 6 вершин и 12 ребер.

Куб - составлен из шести квадратов. Каждая вершина куба является вершиной трёх квадратов и в каждой вершине сходится по три ребра и три грани. Следовательно, сумма плоских углов при каждой вершине равна 270º. У него: 6 граней, 8 вершин и 12 ребер.

Додекаэдр - составлен из двенадцати правильных пятиугольников. Каждая вершина додекаэдра является вершиной трёх правильных пятиугольников и в каждой вершине сходится по три ребра и три грани. Следовательно, сумма плоских углов при каждой вершине равна 324º.У додекаэдра:12 граней, 20 вершин и 30 ребер.

3. История изучения многогранников.

Названия многогранников пришли из Древней Греции, в них указывается число граней: «эдра» - грань; «тетра» - 4; «гекса» - 6; «окта» - 8; «икоса» - 20; «додека» - 12. В дословном переводе с

греческого "тетраэдр", "октаэдр", "гексаэдр", "додекаэдр", "икосаэдр"

означают: "четырехгранник", "восьмигранник", "шестигранник".

"двенадцатигранник", "двадцатигранник". Этим красивым телам посвящена 13-я книга "Начал" Евклида.

Кстати, раз уж заговорили о Евклиде, то давайте познакомимся с ним поближе. С ним, и с другими учеными, изучавшими многогранники.

Евклид (ок. 300 г. до н. э.) - древнегреческий математик.

Основное сочинение Евклида называется «Начала». «Начала» состоят из тринадцати книг. XIII книга посвящена построению пяти правильных многогранников; считается, что часть построений была разработана Теэтетом Афинским. В дошедших до нас рукописях к этим тринадцати книгам прибавлены ещё две. Некоторый «платонизм» Евклида связан с тем, что в Тимее Платона рассматривается учение о четырёх элементах, которым соответствуют четыре правильных многогранника (тетраэдр - огонь, октаэдр - воздух, икосаэдр - вода, куб - земля), пятый же многогранник, додекаэдр, «достался в удел фигуре вселенной». «Начала» могут рассматриваться как развёрнутое со всеми необходимыми посылками и связками учение о построении пяти правильных многогранников - так называемых «платоновых тел», завершающееся доказательством того факта, что других правильных тел, кроме этих пяти, не существует.

Платон и Платоновы тела

Платон (Platon) (род. 427 - ум. 347 гг.до н.э.) - греческий философ. Родился в Афинах. Настоящее имя Платона было Аристокл.

Многогранники называют телами Платона, т.к. они занимали важное место в философской концепции Платона об устройстве мироздания. Четыре многогранника олицетворяли в ней четыре сущности или "стихии". Тетраэдр символизировал огонь, т.к. его вершина устремлена вверх; икосаэдр - воду, т.к. он самый "обтекаемый"; куб - землю, как самый "устойчивый"; октаэдр - воздух, как самый "воздушный". Пятый многогранник, додекаэдр, воплощал в себе "все сущее", символизировал все мироздание, считался главным.

Гармоничные отношения древние греки считали основой мироздания, поэтому четыре стихии у них были связаны такой пропорцией: земля/вода = воздух/огонь .

Атомы "стихий" настраивались Платоном в совершенных консонансах, как четыре струны лиры. Напомню, что консонансом называется приятное созвучие. Надо сказать, что своеобразные музыкальные отношения в платоновых телах являются чисто умозрительными и не имеют под собой никакой геометрической основы. Этими отношениями не связаны ни число вершин платоновых тел, ни обьемы правильных многогранников, ни число ребер или граней.

В связи с этими телами уместно будет сказать, что первая система элементов, включавшая четыре элемента - землю, воду, воздух и огонь, - была канонизирована Аристотелем. Эти элементы оставались четырьмя краеугольными камнями мироздания в течение многих веков. Вполне возможно отождествить их с известными нам четырьмя состояниями вещества - твердым, жидким, газообразным и плазменным.

Характеристики платоновых тел

Многогранник

Число сторон грани

Число граней, сходящихся в каждой вершине

Число граней

Число рёбер

Число вершин

Тетраэдр

Куб

Октаэдр

Икосаэдр

Додекаэдр

Архимед Сиракузский

Архимед обобщил понятие правильного многогранника и открыл новые математические объекты – полуправильные многогранники. Так он назвал многогранники, у которых все грани – правильные многоугольники более как одного рода, а все многогранные углы конгруэнтны. Только в наше время удалось доказать, что тринадцатью открытыми Архимедом полуправильными многогранниками исчерпывается все множество этих геометрических фигур.

Множество архимедовых тел можно разбить на несколько групп.

Первую из них составят пять многогранников, которые получаются из платоновых тел в результате их усечения. Так могут быть получены пять архимедовых тел: усечённый тетраэдр, усечённый гексаэдр (куб), усечённый октаэдр, усечённый додекаэдр и усечённый икосаэдр.

Другую группу составляют всего два тела, именуемых также квазиправильными многогранниками. Эти два тела носят названия: кубооктаэдр и икосододекаэдр.

Два последующих многогранника называются ромбокубооктаэдром и ромбоикосододекаэдром . Иногда их называют также «малым ромбокубооктаэдром» и «малым ромбоикосододекаэдром» в отличие от большого ромбокубооктаэдра и большого ромбоикосододекаэдра.

Наконец существуют две так называемые «курносые» модификации - одна для куба, другая - для додекаэдра. Для каждой из них характерно несколько повёрнутое положение граней, что даёт возможность построить два различных варианта одного и того же «курносого» многогранника (каждый из них представляет собой как бы
зеркальное отражение другого).

Вклад Кеплера в теорию многогранника – это, во-первых, восстановление математического содержания утерянного трактата Архимеда о полуправильных выпуклых однородных многогранниках. Еще более существенным было предложение Кеплера рассматривать невыпуклые многогранники со звездчатыми гранями, подобными пентаграмме и последовавшее за этим открытие двух правильных невыпуклых однородных многогранников – малого звездчатого додекаэдра и большого звездчатого додекаэдра.

Весьма оригинальна космологическая гипотеза Кеплера, в которой он попытался связать некоторые свойства Солнечной системы со свойствами правильных многогранников. Кеплер предположил, что расстояния между шестью известными тогда планетами выражаются через размеры пяти правильных выпуклых многогранников (платоновых тел). Между каждой парой "небесных сфер", по которым, согласно этой гипотезе, вращаются планеты, Кеплер вписал одно из платоновых тел. Вокруг сферы Меркурия, ближайшей к Солнцу планеты, описан октаэдр. Этот октаэдр вписан в сферу Венеры, вокруг которой описан икосаэдр. Вокруг икосаэдра описана сфера Земли, а вокруг этой сферы – додекаэдр. Додекаэдр вписан в сферу Марса, вокруг которой описан тетраэдр. Вокруг тетраэдра описана сфера Юпитера, вписанная в куб. Наконец, вокруг куба описана сфера Сатурна. Эта модель выглядела для своего времени довольно правдоподобно. Во-первых, расстояния, вычисленные при помощи этой модели, были достаточно близки к истинным (учитывая доступную тогда точность измерения). Во-вторых, модель Кеплера давала объяснение, почему существует только шесть (именно столько было тогда известно) планет – именно шесть планет гармонировали с пятью платоновыми телами. Однако даже на тот момент эта привлекательная модель имела один существенный недостаток: сам же Кеплер показал, что планеты вращаются вокруг Солнца не по окружностям ("сферам"), а по эллипсам (первый закон Кеплера). Нечего и говорить, что позже, с открытием еще трех планет и более точным измерением расстояний, эта гипотеза была полностью отвергнута.

  1. Икосаэдро-додекаэдровая структура Земли .

Существует много данных о сравнении структур и процессов Земли с правильными многогранниками.

Полагают, что четырем геологическим эрам Земли соответствуют четыре силовых каркаса правильных Платоновских тел: Протозоа - тетраэдр (четыре плиты) Палеозою - гексаэдр (шесть плит) Мезозою - октаэдр (восемь плит) Кайнозою - додекаэдр (двенадцать плит).

Существует гипотеза, по которой ядро Земли имеет форму и свойства растущего кристалла, оказывающего воздействие на развитие всех природных процессов, идущих на планете. «Лучи» этого кристалла, а точнее его силовое поле, обусловливают икосаэдро-додекаэдрическую структуру Земли, проявляющуюся в том, что в земной коре как бы проступают проекции вписанных в земной шар правильных многогранников: икосаэдра и додекаэдра. 62 их вершины и середины ребер, называемые узлами, оказывается, обладают рядом специфичecких свойств, позволяющих объяснить многие непонятные явления.

Если нанести на глобус очаги наиболее крупных и примечательных культур и цивилизаций Древнего мира, можно заметить закономерность в их расположении относительно географических полюсов и экватора планеты. Многие залежи полезных ископаемых тянутся вдоль икосаэдрово-додекаэдровой сетки.

Еще более удивительные вещи происходят в местах пересечения этих ребер: тут располагаются очаги древнейших культур и цивилизаций: Перу, Северная Монголия, Гаити, Обская культура и другие. В этих точках наблюдаются максимумы и минимумы атмосферного давления, гигантские завихрения Мирового океана, здесь шотландское озеро Лох-Несс, Бермудский треугольник. Дальнейшие исследования Земли, возможно, определят отношение к этой красивой научной гипотезе, в которой, как видно, правильные многогранники занимают важное место.

Советские инженеры В. Макаров и В. Морозов потратили десятилетия на исследование данного вопроса. Они пришли к выводу, что развитие Земли шло поэтапно, и в настоящее время процессы, происходящие на поверхности Земли, привели к появлению залежей с икосаэдро-додекаэдровым узором. Еще в 1929 году С.Н. Кислицин в своих работах сопоставлял структуру додекаэдра-икосаэдра с залежами нефти и алмазов.

В. Макаров и В. Морозов утверждают, что в настоящее время процессы жизнедеятельности Земли имеют структуру додекаэдра-икосаэдра. Двадцать районов планеты (вершины додекаэдра) - центры поясов выходящего вещества, основывающих биологическую жизнь (флора, фауна, человек). Центры всех магнитных аномалий и магнитного поля планеты расположены в узлах системы треугольников. К тому же согласно исследованиям авторов, в настоящую эпоху все ближайшие небесные тела свои процессы располагают согласно додекаэдро-икосаэдрной системе, что замечено у Марса, Венеры, Солнца. Аналогичные энергетические каркасы присущи всем элементам Космоса (Галактики, звезды и т. д.). Нечто похожее наблюдается и в микроструктурах. Например, строение аденовирусов имеет форму икосаэдра.

5. Правильные многогранники и природа.

Правильные многогранники – самые выгодные фигуры, поэтому они широко распространены в природе. Подтверждением тому служит форма некоторых кристаллов. Например, кристаллы поваренной соли имеют форму куба. При производстве алюминия пользуются алюминиево-калиевыми кварцами, монокристалл которых имеет форму правильного октаэдра. Получение серной кислоты, железа, особых сортов цемента не обходится без сернистого колчедана. Кристаллы этого химического вещества имеют форму додекаэдра. В разных химических реакциях применяется сурьменистый сернокислый натрий – вещество, синтезированное учёными. Кристалл сурьменистого сернокислого натрия имеет форму тетраэдра. Последний правильный многогранник – икосаэдр передаёт форму кристаллов бора.

Правильные многогранники встречаются так же и в живой природе. Например, скелет одноклеточного организма феодарии (Circjgjnia icosahtdra) по форме напоминает икосаэдр. Большинство феодарий живут на морской глубине и служат добычей коралловых рыбок. Но простейшее животное защищает себя двенадцатью иглами, выходящими из 12 вершин скелета. Оно больше похоже на звёздчатый многогранник. Из всех многогранников с тем же числом граней икосаэдр имеет наибольший объём при наименьшей площади поверхности. Это свойство помогает морскому организму преодолевать давление толщи воды.

Икосаэдр оказался в центре внимания биологов в их спорах относительно формы вирусов. Вирус не может быть совершенно круглым, как считалось ранее. Чтобы установить его форму, брали различные многогранники, направляли на них свет под теми же углами, что и поток атомов на вирус. Оказалось, что только один многогранник дает точно такую же тень - икосаэдр.

Заключение

Основной целью представленной работы являлось изучение правильных многогранников, их видов и свойств. Для достижения это й цели был проведен сравнительный анализ учебной и научно-популярной литературы, а также ресурсов сети Интернет.

В процессе исследования мы изучили удивительные особенности строения правильных многогранников, их виды и свойства, особенности строения. Познакомились с интересными историческими гипотезами и фактами. Увидели красоту, совершенство и гармонию форм этих тел, которые изучаются учеными на протяжении многих столетий и не перестают удивлять нас. Узнали, что в строении нашей, казалось бы, шарообразной планеты присутствуют правильные многогранники, что еще раз доказывает их значение в окружающем нас мире. И многие современные ученые склоняются к гипотезе, что вещества в природе состоят именно из этих уникальных фигур.

Подводя итоги, можно считать цели исследования достигнутыми. В дальнейшем тему работы можно развивать, например, рассмотреть использование свойств, особенностей симметрии правильных многогранников в архитектуре, технике, искусстве.

Список используемой литературы

1.Атанасян Л.С., Бутузов В.Ф. Геометрия 10-11 класс – 2008. - №14

2.Потоскуев Е.В., Звавич Л.И. Геометрия 11 класс - 2008 - №4

3.Паповский В.М. Углубленное изучение геометрии в 10-11 классах

4. Веленкин Н.Я. За страницами учебника математики: Арифметика. Алгебра. Геометрия – 1996

5. Математика: Школьная энциклопедия – 2003

6. Депман И.Я. ,Веленкин Н.Я. За страницами учебника математики – 1989

7. Энциклопедия для детей. Аванта+ Математика - 2003