Производные угольной кислоты ррт лекция. Функциональные производные угольной кислоты

При обычных условиях фосген представляет собой газ, сгущающийся в жидкость с темп. кип. и плотностыа

Фосген очень ядовит. Он сильно действует на органы дыхания и слизистые оболочки. В первую мировую войну применялся, в качестве Обладает резким удушливым запахом.

При действии воды (или лучше водной щелочи) разлагается с образованием соляной кислоты и двуокиси углерода:

Получается фосген из хлора и окиси углерода в присутствии катализатора, специально обработанного для увеличения его пористости:

Фосген служит исходным веществом для синтеза разнообразных органических соединений.

Сероуглерод Из производных угольной кислоты, содержащих серу, широкое применение находит сероуглерод. Он представляет собой бесцветную подвижную жидкость с темп. кип. обладающую эфирным запахом (технический сероуглерод, имеет неприятный запах, напоминающий запах редьки). Сероуглерод ядовит и чрезвычайно огнеопасен, так как его пары воспламеняются при низкой температуре.

Сероуглерод применяется в качестве исходного продукта для синтеза четыреххлористого углерода (стр. 74), в производстве вискозного волокна (стр. 345), а также в качестве растворителя жиров и др.

Получается сероуглерод путем пропускания паров серы над. раскаленным углем:

В настоящее время наиболее экономически выгодным способом получения сероуглерода является взаимодействие метана с парами серы над силикагелем:

Карбамид (мочевина) представляет собой полный амид, угольной кислоты:

Это одно из первых органических веществ, полученных синтетическим путем из неорганических веществ (Вёлер, 1828 г.).

Карбамид - кристаллическое вещество с темп. пл. 133 °С, легко растворимое в воде и спирте. С одним эквивалентом кислот образует соли, например:

При нагревании растворов карбамида в присутствии кислот ил» щелочей он легко гидролизуется с образованием двуокиси углерода и аммиака:

При действии азотистой кислоты на карбамид образуются двуокись углерода, азот и вода:

При нагревании карбамида со спиртами получаются уретаны - сложные эфиры карбаминовой кислоты

Уретаны представляют собой кристаллические вещества, растворимые в воде.

При взаимодействии карбамида с формальдегидом в нейтральной или слабощелочной среде при температуре около 30 °С образуются монометилолкарбамид и диметилолкарбамид:

Эти производные при нагревании в кислой среде образуют карбамидные полимеры - основу распространенных пластических масс - аминопластов (стр. 331) и клеев для склеивания древесины.

Карбамид (мочевина) играет большую роль при обмене веществ в животных организмах; является конечным продуктом азотистого обмена, при котором азотистые вещества (например, белки), претерпев в организме ряд сложных превращений, выделяются с мочой в виде мочевины (откуда и произошло ее название).

Карбамид является концентрированным азотным удобрением (содержит 46% азота) и быстро усваивается растениями. Кроме того, карбамид успешно используется для подкормки скота.

В настоящее время карбамид находит применение для выделения парафиновых углеводородов нормального строения из нефтяных продуктов. Дело в том, что кристаллы карбамида образуют «кристаллические поры», настолько узкие, что в них проникают углеводороды нормального строения, но не могут проникнуть углеводороды с разветвленной цепью. Поэтому кристаллы карбамида адсорбируют из смеси лишь углеводороды нормального строения, которые после растворения карбамида отделяются от водного слоя.

В промышленности карбамид получают из аммиака и двуокиси углерода при 185 °С и давлении

Тиокарбамид Кристаллическое вещество; темп, пл. 172°С. Легко, растворим в воде, трудно растворим в спирте. Тиокарбамид может быть получен действием сероводорода, на цианамид

или нагреванием роданистого аммония. Применяется для получения карбамидных полимеров.



Описание. Растворимость. Белый кристаллический порошок без запаха, солено-щелочного вкуса, растворим в воде, практически нерастворим в спирте. Водные растворы имеют слабо-щелочную реакцию. При взбалтывании и нагревании до 70 о С водных растворов NaHCO 3 образуется двойная соль Na 2 CO 3 · NaHCO 3 .

Получение

Натрия гидрокарбонат был открыт в 1801 году ученым В. Розе. Получают препарат насыщением очищенной кальцинированной соды диоксидом углерода:

Na 2 CO 3 · 10 H 2 O + CO 2 → 2NaHCO 3 + 9 H 2 O

кальцинированна диоксид питьевая

Подлинность

При качественном анализе проводят фармакопейные реакции на ион Na + и HCO 3 - - ион.

Общие реакции на CO 3 2- и HCO 3 - - ионы :

При действии сильной минеральной кислоты наблюдается бурное выделение CO 2:

NaHCO 3 + HCl → NaCl + H 2 O + CO 2

CO 2 + Ca(OH) 2 → CaCO 3 ↓ + H 2 O

диоксид известковая белый

углерода вода

Отличительные реакции :

1) Карбонаты от гидрокарбонатов можно отличить по окраске индикатора – фенолфталеина. При растворении в воде карбоната натрия реакция среды слабощелочная и поэтому окраска индикатора - розовая: Na 2 CO 3 + H 2 O → NaHCO 3 + NaOH



При растворении гидрокарбоната натрия реакция среды кислая, а индикатор бесцветный или слабо-розового цвета: NaHCO 3 + H 2 O → H 2 CO 3 + NaOH

H 2 CO 3 → CO 2 + H 2 O

2) С насыщенным раствором сульфата магния карбонаты образуют белый осадок при комнатной температуре, а гидрокарбонаты – только при кипячении:

4 Na 2 CO 3 + 4 MgSO 4 + 4 H 2 O → 3 MgCO 3 · Mg(OH) 2 · 3 H 2 O↓ + 4 Na 2 SO 4 + CO 2

2 NaHCO 3 → Na 2 CO 3 + CO 2 + H 2 O

Доброкачественность

NaHCO 3: 1) допускаются: Cl – , K + , Ca 2+ , Fe, As.

Специфическая примесь CO 3 2– , определяется прокаливанием при температуре 300 о С. Потеря в массе при этом должна быть не менее 36,6 %. Чем больше примеси карбонатов, тем меньше потеря в массе при прокаливании. Теоретическая потеря составляет 36,9 %. Разница между теоретической потерей в массе и указанной в ГФ определяет допустимый предел примеси карбонатов в препарате - 0,3 %.

2) недопускаются: соли NH 4 + и тяжелые металлы.

Количественное определение

Ацидиметрия , прямое титрование, навеску растворяют в свежепрокипяченной и охлажденной воде для удаления CO 2 , титруют 0,5 н HCl, индикатор метиловый оранжевый. Э = М.

Применение. Хранение.

Хранят в хорошо укупоренной таре. Вещество устойчиво в сухом воздухе, но во влажном медленно теряет CO 2 и образует Na 2 CO 3 .

Применяют как антацидное средство внутрь, а также наружно в виде полосканий, промываний, ингаляций 0,5 – 2 % растворы.

Особенность приготовления инъекционных растворов NaHCO 3

Инъекционные растворы NaHCO 3 стерилизуют при 100 о С 30 минут. При этом образуется CO 2 , поэтому склянки с инъекционным раствором NaHCO 3 заполняют на 2/3 объема при температуре не более 20 o C.

После стерилизации раствор охлаждают до полного растворения образовавшегося CO 2 .

Описание. Растворимость. Бесцветные прозрачные кристаллы или белый кристаллический порошок без запаха, слабо горького вкуса. Возгоняется и выветривается. Мало растворим в воде, растворим в спирте, мало растворим в хлороформе, эфире, скипидаре.

Получение

Терпингидрат получают из пинена - продукта фракционной перегонки скипидара. Проводят гидратацию пинена при действии серной кислоты на холоду в течении 10 дней. Затем смесь нейтрализуют содой, отделяют терпингидрат, очищают его и перекристаллизовывают.

Подлинность

Общие реакции

Препаратыидентифицируют поспиртовому гидроксилу :

1) реакцией образования сложных эфиров с кислотами . Это свойство используется при получении валидола. При этерификации уксусным ангидридом ментола и терпингидрата получаются ацильные производные в виде белого осадка, можно определить его температуру плавления.

2) реакцией окисления. Ментол окисляется слабыми окислителями до кетона-менто-на. При действии сильных окислителей ментол разлагается до муравьиной, уксусной, масляной и щавелевой кислот.

Специфические реакции

Терпингидрат при взаимодействии со спиртовым раствором хлорида окисного железа в процессе выпаривания образует карминно-красное, фиолетовое и зеленое окрашивание в разных местах выпарительной чашки. При добавлении бензола к продуктам окисления образуется синее окрашивание.

Терпингидратоткрывают так же реакцией дегидратации в присутствии концентрированной серной кислоты по образованию мути и ароматного запаха:

Доброкачественность

Терпингидрат. 1) Допускают:

сульфатную золу и тяжелые металлы.

Диоксид углерода (углекислый газ) - участник многих реакций карбоксилирования и декарбоксилирования in vivo и in vitro.

Карбоксилирование возможно тогда, когда в реакцию с диоксидом углерода вступают соединения с частичным отрицательным зарядом на атоме углерода. В организме взаимодействие диоксида углерода с ацетилкоферментом А приводит к образованию малонилкофермента А.

Подобно самой угольной кислоте, в свободном виде неизвестны и некоторые ее производные: монохлорангидрид СlСООН и моноамид –карбаминовая кислота H 2 NCOOH. Однако их сложные эфиры - вполне стабильные соединения.

Для синтеза производных угольной кислоты можно использовать фосген (дихлорангидрид) СОСl 2 , легко образующийся при взаимодействии монооксида углерода с хлором на свету. Фосген - чрезвычайно ядовитый газ (т. кип. 8 о С), в Первую мировую войну его применяли в качестве боевого отравляющего вещества.

Этиловый эфир хлоромуравьиной кислоты при реакции с аммиаком образует этиловый эфир карбаминовой кислоты H 2 NCOOC 2 H 5 . Эфиры карбаминовой кислоты (карбаматы) имеют общее название - уретаны.

Уретаны нашли применение в медицине как лекарственные средства, в частности мепротан и этацизин.

Мочевина (карбамид) (NH 2) 2 C=О - важнейший азотсодержащий конечный продукт обмена веществ у человека (с мочой выделяется мочевины около 20-30 г/сут).

Кислоты и щелочи при нагревании вызывают гидролиз мочевины; в организме она гидролизуется под действием ферментов.

При медленном нагревании до температуры 150-160 о С мочевина разлагается с выделением аммиака и образованием биурета.

При взаимодействии биурета в щелочных растворах с ионами меди(II) наблюдается характерное фиолетовое окрашивание, обусловленное образованием хелатного комплекса (биуретовая реакция). Остаток биурета в хелатном комплексе имеет имидную структуру.

Производными карбоновых кислот, содержащими остаток мочевины в качестве заместителя, являются уреиды. Они применяются в медицине, в частности уреид α-бромоизовалериановой кислоты – бромизовал
(бромурал) - используется как мягкое снотворное средство. Его эффект обусловлен сочетанием известных своим угнетающим действием на ЦНС брома и остатка изовалериановой кислоты.

Гуанидин (иминомочевина) - азотистое производное мочевины - является сильным основанием, поскольку сопряженная кислота - ион гуанидиния - мезомерно стабилизирован.

Остаток гуанидина входит в состав α-аминокислоты - аргинина и нуклеинового основания - гуанина.

3.2 Гетерофункциональные соединения в процессах жизенедеятельности

Общая характеристика

Большинство веществ, участвующих в метаболизме, являются гетерофункциональными соединениями.

Гетерофункциональными называют соединения, в молекулах которых имеются различные функциональные группы.

Характерные для биологически важных соединений сочетания функциональных групп представлены в таблица 3.2.

Таблица 3.1. Наиболее распространенные сочетания функциональных групп в биологически важных алифатических соединениях

Среди гетерофункциональных соединений в природных объектах наиболее распространены аминоспирты, аминокислоты, гидроксикарбонильные соединения, а также гидрокси- и оксокислоты (табл. 9.2).

Таблица 9.2. Некоторые гидрокси- и оксокислоты и их производные

* Для ди- и трикарбоновых кислот - при участии всех карбоксильных групп. Для неполных солей и функциональных производных добавляется префикс гидр(о)-, например «гидроксалат» для аниона НООС-СОО - .

Имеющие особую биологическую важность α-аминокислоты описаны в главе 12. Полигидроксиальдегиды и полигидроксикетоны (углеводы) рассматриваются в главе 13.

В ароматическом ряду основу важных природных биологически активных соединений и синтетических лекарственных средств (см. 9.3) составляют и-аминофенол, и-аминобензойная, салициловая и сульфаниловая кислоты.

Систематические названия гетерофункциональных соединений строятся по общим правилам заместительной номенклатуры (см. 1.2.1). Однако для ряда широко распространенных кислот предпочтительны тривиальные названия (см. табл. 9.2). Их латинские названия служат основой названия анионов и производных кислот, которые часто не совпадают с русскими тривиальными названиями.

Реакционная способность