Каковы функции ядра. Ядро клетки: функции и структура


Ядро обеспечивает важнейшие метаболические и генетические функции клетки. Большинство клеток содержит одно ядро, изредка встречаются многоядерные клетки (некоторые грибы, простейшие, водоросли, поперечно-полосатые мышечные волокна и др.). Лишенная ядра клетка быстро погибает. Однако некоторые клетки в зрелом (дифференцированном) состоянии утрачивают ядро. Такие клетки либо живут недолго и заменяются новыми (например, эритроциты), либо поддерживают свою жизнедеятельность за счет притока метаболитов из тесно примыкающих к ним клеток – "кормилец" (например, клетки флоэмы у растений). По форме ядро может быть шаровидным, овальным, лопастным, линзовидным и т.д. Размер, форма и структура ядер изменяются в зависимости от функционального состояния клеток, быстро реагируя на изменение внешних условий. Ядро обычно перемещается по клетке пассивно с током окружающей его цитоплазмы, но иногда оно способно самостоятельно передвигаться, совершая движения амебоидного типа.

Ядро – самая крупная органелла клетки, ее важнейший регулирующий центр. Как правило, клетка имеет одно ядро, но существуют клетки двухядерные и многоядерные. В некоторых организмах могут встречаться клетки, лишенные ядер. К таким безъядерным клеткам относятся, например, эритроциты млекопитающих, тромбоциты, клетки ситовидных трубок растений и некоторые другие типы клеток. Обычно безъядерными бывают высокоспециализированные клетки, утратившие ядра на ранних стадиях развития.

Ядро содержит ядрышко, а иногда и несколько ядрышек. Ядрышко – компактная структура в ядре интерфазных клеток.

Ядрышко – структура, составленная из расположенных рядом участков нескольких различных хромосом. Эти участки представляют собой большие петли ДНК, содержащие гены рибосомальной РНК (рРНК). Такие петли называются ядрышковым организатором.
Ядрышко является центром образования рибосом, т.к. здесь осуществляется синтез рРНК и соединение этих молекул с белками, т.е. происходит формирование субъединиц рибосом, которые затем поступают в цитоплазму, где и завершается сборка рибосом.

первые ядрышки были обнаружены Фонтана в 1774 г. В живых клетках они выделяются на фоне диффузной организации хроматина из-за своей светопреломляемости. Последнее свойство связано с тем, что ядрышки являются наиболее плотными структурами в клетке. Они обнаруживаются практически во всех ядрах эукариотических клеток за редким исключением. Это говорит об обязательном присутствии этого компонента в клеточном ядре.

В клеточном цикле ядрышко присутствует в течение всей интерфазы, в профазе по мере компактизации хромосом во время митоза оно постепенно исчезает и отсутствует в мета- и анафазе, вновь появляется в середине телофазы, чтобы сохраняться вплоть до следующего митоза, или до гибели клетки.

Долгое время функциональное значение ядрышка было непонятно. Вплоть до 1950-х годов исследователи считали, что вещество ядрышка представляет собой своего рода запас, который используется и исчезает в момент деления ядра.

Еще в 1930-х годах рядом исследователей (МакКлинток, Хейтц, С.Г. Навашин) было показано, что возникновение ядрышек связано топографически с определенными зонами на особых, ядрышкообразующих хромосомах. Эти зоны были названы ядрышковыми организаторами, а сами ядрышки представлялись как структурное выражение хромосомной активности. Позднее, в 1940-х годах, когда было найдено, что ядрышки содержат РНК, стала понятна их «базофилия», сродство к основным (щелочным) красителям вследствие кислой природы РНК. По данным цитохимических и биохимических исследований, основным компонентом ядрышка является белок: на его долю приходится до 70-80% от сухой массы. Такое большое содержание белка и определяет высокую плотность ядрышек. Кроме белка в составе ядрышка обнаружены нуклеиновые кислоты: РНК (5-14%) и ДНК (2-12%).

Уже в 1950-х годах при изучении ультраструктуры ядрышек в их составе были выявлены гранулы, сходные по своим свойствам с цитоплазматическими гранулами рибонуклеопротеидной природы - с рибосомами. Следующим этапом в изучении ядрышка было открытие принципиального факта - «ядрышковый организатор» является вместилищем генов рибосомных РНК.

В ядрышке различают:

фибриллярный центр – слабоокрашенный компонент (ДНК, кодирующая РНК),

фибриллярный компонент, где протекают ранние стадии образования предшественников рРНК; состоит из тонких (5 нм) рибонуклеопотеиновых фибрилл и транскрипционно активных участков ДНК;

гранулярный компонент – содержит зрелые предшественники рибосомных СЕ, имеющих диаметр 15 нм.

Основные функции ядрышка – синтез рРНК (транскрипция и процессинг рРНК) и образование СЕ рибосом.

Транскрипция рРНК происходит в хромосомах 13, 14, 15, 21 и 22. Петли ДНК этих хромосом, содержащие соответствующие гены, формируют ядрышковый организатор, получивший название в связи с тем, что восстановление ядрышка в фазу G 1 клеточного цикла начинается с этой структуры.



Биология 5,6,7,8,9,10,11 класс, ЕГЭ, ГИА

Распечатать

Ядро - это важный структурный компонент эукариотической клетки , который содержит молекулы ДНК - генетическую информацию. Имеет округлую или овальную форму. Ядро хранит, передает и реализует наследственную информацию, а также обеспечивает синтез белка. Подробнее о клеточной организации , составе и функциях ядра животной или растительной клетки рассмотрим в таблице ниже.

Компонент ядра

Выполняемая функция

Ядерная оболочка . Имеет пористую двухмембранную структуру.

  1. Разграничивает ядро от остальных органоидов и цитоплазмы.
  2. Обеспечивает взаимодействие ядра с цитоплазмой .

Хромосомы . Плотные продолговатые или нитевидные образования, которые можно рассмотреть только при делении клетки .

Ядрышки . Имеют сферическую или неправильную форму.

Участвуют в процессе синтеза РНК , входящей в состав рибосомы .

Ядерный сок (кариоплазма ). Полужидкая среда, находящаяся внутри ядра.

Вещество, в котором содержатся ядрышки и хромосомы.

Несмотря на различия в строении и функциях, все части клетки постоянно взаимодействуют друг с другом, их объединяет одна главная функция - обеспечение жизнедеятельности клетки, своевременное деление клетки и правильный обмен веществ внутри нее.

Ядро есть только у эукариотических клеток. При этом некоторые из них его утрачивают в процессе дифференцировки (зрелые членики ситовидных трубок, эритроциты). У инфузорий есть два ядра: макронуклеус и микронуклеус. Бывают многоядерные клетки, возникшие путем объединения нескольких клеток.

Однако в большинстве случаев в каждой клетке имеется только одно ядро.

Ядро клетки является самым крупным ее органоидом (если не считать центральные вакуоли клеток растений). Оно самое первое из клеточных структур, которое было описано учеными. Клеточные ядра обычно имеют шаровидную или яйцевидную форму.

Ядро регулирует всю активность клетки. В нем находятся хроматиды - нитевидные комплексы молекул ДНК с белками-гистонами (особенностью которых является содержание в них большого количества аминокислот лизина и аргинина).

ДНК ядра хранит информацию о почти всех наследственных признаках и свойствах клетки и организма. В период клеточного деления хроматиды спирализуются, в таком состоянии они видны в световой микроскоп и называются хромосомами .

Хроматиды в неделящейся клетке (в период интерфазы) не полностью деспирализованы.

Плотно спирализованные части хромосом называются гетерохроматином . Он располагается ближе к оболочке ядра. К центру ядра располагается эухроматин - более деспирализованная часть хромосом.

На нем происходит синтез РНК, т. е. идет считывание генетической информации, экспрессия генов.

Репликация ДНК предшествует делению ядра, которое, в свою очередь, предшествует делению клетки. Таким образом, дочерние ядра получают уже готовую ДНК, а дочерние клетки - готовые ядра.

Внутреннее содержимое ядра отделяется от цитоплазмы ядерной оболочкой , состоящей из двух мембран (внешней и внутренней).

Таким образом, ядро клетки относится к двумембранным органоидам. Пространство между мембранами называется перинуклеарным.

Внешняя мембрана в определенных местах переходит в эндоплазматическу сеть (ЭПС).

Если на ЭПС располагаются рибосомы, то она называется шероховатой. Рибосомы могут размешаться и на наружней ядерной мембране.

Во множестве мест внешняя и внутренняя мембраны сливаются друг с другом, образуя ядерные поры .

Их число непостоянно (в среднем исчисляются тысячами) и зависит от активности биосинтеза в клетке. Через поры ядро и цитоплазма обмениваются различными молекулами и структурами. Поры - это не просто дырки, они сложно устроены для избирательного транспорта. Их структуру определяют различные белки-нуклеопорины.

Из ядра выходят молекулы иРНК, тРНК, субчастицы рибосом.

В ядро через поры заходят различные белки, нуклеотиды, ионы и др.

Субчастицы рибосом собираются из рРНК и рибосомных белков в ядрышке (их может быть несколько).

Центральную часть ядрышка образуют специальные участки хромосом (ядрышковые организаторы), которые располагаются рядом друг с другом. В ядрышковых организаторах содержится большое количество копий кодирующих рРНК генов. Перед клеточным делением ядрышко исчезает и вновь образуется уже во время телофазы.

Жидкое (гелеобразное) содержимое клеточного ядра называется ядерным соком (кариоплазмой, нуклеоплазмой) .

Его вязкость почти такая же как у гиалоплазмы (жидкое содержимое цитоплазмы), однако кислотность выше (ведь ДНК и РНК, которых в ядре большое количество, - это кислоты). В ядерном соке плавают белки, различные РНК, рибосомы.

Структурные элементы ядра бывают четко выражены только в определенный период клеточного цикла в интерфазе. В период деления клетки (в период митоза или мейоза) одни структурные элементы исчезают, другие существенно преобразуются.

Классификация структурных элементов интерфазного ядра:

Хроматин;

Ядрышко;

Кариоплазма;

Кариолемма.

Хроматин представляет собой вещество, хорошо воспринимающее краситель (хромос), откуда и произошло его название.

Хроматин состоит из хроматиновых фибрилл, толщиной 20-25 нм, которые могут располагаться в ядре рыхло или компактно. На этом основании различают два вида хроматина:

Эухроматин — рыхлый или деконденсированный хроматин, слабо окрашивается основными красителями;

Гетерохроматин — компактный или конденсированный хроматин, хорошо окрашивается этими же красителями.

При подготовке клетки к делению в ядре происходит спирализация хроматиновых фибрилл и превращение хроматина в хромосомы.

После деления в ядрах дочерних клеток происходит деспирализация хроматиновых фибрилл и хромосомы снова преобразуются в хроматин. Следовательно, хроматин и хромосомы представляют собой различные фазы одного и того же вещества.

По химическому строению хроматин состоит из:

Дезоксирибонуклеиновой кислоты (ДНК) 40 %;

Белков около 60 %;

Рибонуклеиновой кислоты (РНК) 1 %.

Ядерные белки представлены формами:

Щелочными или гистоновыми белками 80-85 %;

Кислыми белками 15-20 %.

Гистоновые белки связаны с ДНК и образуют полимерные цепи дезоксирибонуклеопротеида (ДНП), которые и представляют собой хроматиновые фибриллы, отчетливо видимые при электронной микроскопии.

На определенных участках хроматиновых фибрилл осуществляется транскрипция с ДНК различных РНК, с помощью которых осуществляется затем синтез белковых молекул. Процессы транскрипции в ядре осуществляются только на свободных хромосомных фибриллах, то есть в эухроматине.

В конденсированном хроматине эти процессы не осуществляются и потому гетерохроматин является неактивным хроматином. Соотношение эухроматина и гетерохроматина в ядре является показателем активности синтетических процессов в данной клетке. На хроматиновых фибриллах в S-периоде интерфазы осуществляется также процессы редупликации ДНК. Эти процессы происходят как в эухроматине, так и в гетерохроматине, но в гетерохроматине они протекают значительно позже.

Ядрышко — сферическое образование (1-5 мкм в диаметре) хорошо воспринимающее основные красители и располагающееся среди хроматина.

В одном ядре может содержаться от 1 до 4-х и даже более ядрышек. В молодых и часто делящихся клетках размер ядрышек и их количество увеличены.

Ядрышко не является самостоятельной структурой. Оно формируется только в интерфазе в определенных участках некоторых хромосом — ядрышковых организаторах, в которых содержатся гены, кодирующие молекулу рибосомальной РНК. В области ядрышкового анализатора осуществляется транскрипция с ДНК рибосомальной РНК.

В ядрышке происходит соединение рибосомальной РНК с белком и образование субъединиц рибосом.

Микроскопически в ядрышке различают:

Фибриллярный компонент — локализуется в центральной части ядрышка и представляет собой нити рибонуклеопротеида (РНП);

Гранулярный компонент — локализуется в периферической части ядрышка и представляет скопление субъединиц рибосом.

В профазе митоза, когда происходит спирализация хроматиновых фибрилл и образование хромосом, процессы транскрипции РНК и синтеза субъединиц рибосом прекращаются и ядрышко исчезает.

По окончании митоза в ядрах вновь образованных клеток происходит деконденсация хромосом и появляется ядрышко.

Кариоплазма (нуклеоплазма) или ядерный сок состоит из воды, белков и белковых комплексов (нуклеопротеидов, гликопротеидов), аминокислот, нуклеотидов, сахаров. Под световым микроскопом кариоплазма бесструктурна, но при электронной микроскопии в ней определяются гранулы (15 нм), состоящие из рибонуклеопротеидов.

Белки кариоплазмы являются в основном белками-ферментами, в том числе ферментами гликолиза, осуществляющих расщепление углеводов и образование АТФ.

Негистоновые (кислые) белки образуют в ядре структурную сеть (ядерный белковый матрикс), которая вместе с ядерной оболочкой принимает участие в создание внутреннего порядка, прежде всего в определенной локализации хроматина.

При участии кариоплазмы осуществляется обмен веществ в ядре, взаимодействие ядра и цитоплазмы.

Кариолемма (нуклеолемма) — ядерная оболочка отделяет содержимое ядра от цитоплазмы (барьерная функция), в то же время обеспечивает регулируемый обмен веществ между ядром и цитоплазмой. Ядерная оболочка принимает участие в фиксации хроматина.

Кариолемма состоит из двух билипидных мембран — внешней и внутренней ядерной мембраны, разделенных перинуклеарным пространством, шириной от 25 до 100 нм.

В кариолемме имеются поры, диаметром 80-90 нм. В области пор внешняя и внутренняя ядерные мембраны переходят друг в друга, а перинуклеарное пространство оказывается замкнутым.

Просвет поры закрыт особым структурным образованием — комплексом поры, который состоит из фибриллярного и гранулярного компонента. Гранулярный компонент представлен белковыми гранулами диаметром 25 нм, располагающимися по краю поры в три ряда.

От каждой гранулы отходят фибриллы и соединяются в центральной грануле, располагающейся в центре поры. Комплекс поры играет роль диафрагмы, регулирующей ее проницаемость. Размеры пор стабильны для данного типа клеток, но число пор может изменяться в процессе дифференцировки клетки. В ядрах сперматозоидов ядерные поры отсутствуют. На наружной ядерной мембране могут локализоваться прикрепленные рибосомы. Кроме того, наружная ядерная мембрана может продолжаться в канальцы эндоплазматической сети.

Гетерохроматин - участки хроматина, находящиеся в течение клеточного цикла в конденсированном (компактном) состоянии. Особенностью гетерохроматиновой ДНК является крайне низкая транскрибируемость. ГЕТЕРОХРОМАТИН

(от гетеро… и хроматин), участки хроматина, находящиеся в конденсированном (плотно упакованном) состоянии в течение всего клеточного цикла. Интенсивно окрашиваются ядерными красителями и хорошо видны в световой микроскоп даже во время интерфазы.

Гетерохроматич. р-ны хромосом, как правило, реплицируются позже эухроматиновых и не транскрибируются, т. е. генетически весьма инертны. Ядра активных тканей и эмбриональных клеток большей частью бывают бедны Г. Различают факультативный и конститутивный (структурный) Г. Факультативный Г. присутствует только в одной из гомологичных хромосом. Пример Г. такого типа - вторая Х-хромосома у жен.особей млекопитающих, к-рая в ходе раннего эмбриогенеза инактивируется вследствие её необратимой конденсации.

Структурный Г. содержится в обеих гомологичных хромосомах, локализован преим. в экспонированных участках хромосомы - в центромере, теломере, ядрышко-вом организаторе (во время интерфазы он располагается неподалёку от ядерной оболочки), обеднён генами, обогащен сателлитной ДНК и может инактивиро-вать расположенные по соседству гены (т.

н. эффект положения). Этот тип Г. очень вариабелен как в пределах одного вида, так и в пределах близких видов. Он может влиять на синапсис хромосом, частоту индуцированных разрывов и рекомбинацию. Участкам структурного Г. свойственна адгезия (слипание) сестринских хроматид.

ЭУХРОМАТИН

(от греч. eu - хорошо, полностью и хроматин), участки хромосом, сохраняющие деспирализованное состояние в покоящемся ядре (в интерфазе) и спирализующиеся при делении клеток (в профазе); содержат большинство генов и потенциально способны к транскрипции.

Э. отличается от гетерохроматина меньшим содержанием метилированных оснований и блоков повторяющихся последовательностей ДНК, большим количеством негистоновых белков и ацетилированных молекул гистонов, менее плотной упаковкой хромосомного материала, что, как полагают, особенно важно для активности Э. и делает его потенциально более доступным для ферментов, обеспечивающих транскрипцию.

Э. может приобретать свойства факультативного гетерохроматина - инактивироваться, что является одним из способов регуляции генной активности.

Дата публикования: 2015-02-18; Прочитано: 229 | Нарушение авторского права страницы

studopedia.org — Студопедия.Орг — 2014-2018 год.(0.002 с)…

Строение и функции клеточного ядра.

Ядро – обязательная часть эукариотической клетки. Главная функция ядра – хранение генетического материала в форме ДНК и передача ее дочерним клеткам при клеточном делении. Кроме того, ядро управляет белковыми синтезами, контролирует все процессы жизнедеятельности клетки.

(в растительной клетке ядро описал Р.Броун в 1831г., в животной – Т.Шванн в 1838г.)

Большинство клеток имеет одно ядро, обычно округлой формы, реже неправильной формы.

Размеры ядра колеблются от 1мкм (у некоторых простейших) до 1мм (в яйцеклетках рыб, земноводных).

Встречаются двуядерные клетки (клетки печени, инфузорий) и многоядерные (в клетках поперечно – полосатых мышечных волокон, а так же в клетках ряда видов грибов и водорослей).

Некоторые клетки (эритроциты) – безъядерные, это редкое явление, носит вторичный характер.

В состав ядра входят:

1)ядерная оболочка;

2)кариоплазма;

3)ядрышко;

4)хроматин или хромосомы.

Хроматин находится в неделящемся ядре, хромосомы – в митотическом ядре.

Оболочка ядра состоит из двух мембран (наружной и внутренней). Наружная ядерная мембрана соединяется с мембранными каналами ЭПС. На ней располагаются рибосомы.

В мембранах ядра имеются поры (3000-4000). Через ядерные поры происходит обмен различными веществами между ядром и цитоплазмой.

Кариоплазма (нуклеоплазма) представляет собой желеобразный раствор, который заполняет пространство между структурами ядра (хроматином и ядрышками).

Она содержит ионы, нуклеотиды, ферменты.

Ядрышко, обычно шаровидной формы (одно или несколько), не окружено мембраной, содержит фибриллярные белковые нити и РНК.

Ядрышки – не постоянные образования, они исчезают в начале деления клетки и восстанавливаются после его окончания. Ядрышки имеются только в неделящихся клетках.

В ядрышках происходит формирование рибосом, синтез ядерных белков. Сами же ядрышки образуются на участках вторичных перетяжек хромосом (ядрышковых организаторах). У человека ядрышковые организаторы находятся на 13,14,15,21 и 22 хромосомах.

Предыдущая12345678910111213141516Следующая

ПОСМОТРЕТЬ ЕЩЕ:

Ядро клетки по своему строению относится к группе двухмембранных органоидов. Однако ядро настолько важно для жизнедеятельности эукариотической клетки, что обычно его рассматривают отдельно. Ядро клетки содержит хроматин (деспирализованные хромосомы), который отвечает за хранение и передачу наследственной информации.

В строении ядра клетки выделяют следующие ключевые структуры:

  • ядерная оболочка, состоящая из внешней и внутренней мембраны,
  • ядерный матрикс - всё, что заключено внутри клеточного ядра,
  • кариоплазма (ядерный сок) - жидкое содержимое, подобное по составу гиалоплазме,
  • ядрышко,
  • хроматин.

Кроме перечисленного в ядре содержатся различные вещества, субъединицы рибосом, РНК.

Строение наружной мембраны ядра клетки сходно с эндоплазматической сетью.

Часто внешняя мембрана просто переходит в ЭПС (последняя от нее как бы ответвляется, является ее выростом).

С внешней стороны на ядре располагаются рибосомы.

Внутренняя мембрана более прочная за счет выстилающей ее ламины.

Кроме опорной функции к этой ядерной выстилке прикрепляется хроматин.

Пространство между двумя ядерными мембранами называется перинуклеарным.

Мембрана ядра клетки пронизана множеством пор, соединяющих цитоплазму с кариоплазмой. Однако по своему строению поры ядра клетки не просто отверстия в мембране. В них содержатся белковые структуры (поровый комплекс белков), отвечающий за избирательную транспортировку веществ и структур. Пассивно через пору могут проходить только малые молекулы (сахара, ионы).

Хроматин ядра клетки состоит их хроматиновых нитей. Каждая хроматиновая нить соответствует одной хромосоме, которая образуется из нее путем спирализации.

Чем сильнее раскручена хромосома (превращена в хроматиновую нить), тем больше она задействована в процессах синтеза на ней.

Одна и та же хромосома может быть в одних участках спирализована, а в других деспирализована.

Каждая хроматиновая нить ядра клетки по строению является комплексом ДНК и различных белков, которые в том числе выполняют функцию скручивания и раскручивания хроматина.

Ядра клеток могут содержать одно и более ядрышек . Ядрышки состоят из рибонуклеопротеидов, из которых в дальнейшем образуются субъединицы рибосом.

Здесь происходит синтез рРНК (рибосомальной РНК).

ЯДРЫШКО (nucleolus) - составная часть ядра клетки, представляющая собой оптически плотное, сильно преломляющее свет тельце. В современной цитологии (см.) ядрышко признается местом синтеза и накопления всех рибосомных РНК (рРНК), кроме 5S-PHK (см. Рибосомы).

Ядрышко впервые описано в 1838- 1839 годы М. Шлейденом в растительных и Т. Шванном - в животных клетках.

Число ядрышек, их размеры и форма варьируют в зависимости от вида клеток. Наиболее часто встречаются ядрышки сферической формы. Ядрышка способны сливаться друг с другом, поэтому в ядре могут присутствовать либо несколько мелких ядрышек, либо одно крупное, либо несколько ядрышек разной величины. В клетках с низким уровнем синтеза белка ядрышки невелики или не выявляются. Активизация синтеза белков сопряжена с увеличением общего объема ядрышек. Во многих случаях общий объем ядрышек также коррелирует с числом хромосомных наборов клетки (см. Хромосомный набор).

Ядрышко не имеет оболочки и окружено слоем конденсированного хроматина (см.) - так называемого околоядрышкового, или перинуклеолярного, гетерохроматина. С помощью цитохимических методов в ядрышках выявляют РНК и белки, кислые и основные. Белки ядрышка включают ферменты, участвующие в синтезе рибосомных РНК. При окраске препаратов ядрышка, как правило, прокрашиваются основным красителем. В яйцеклетках некоторых червей, моллюсков и членистоногих встречаются сложные ядрышки (амфинуклеолы), состоящие из двух частей, одна из которых окрашивается основным красителем, другая (белковое тельце) - кислым. При прекращении синтеза рРНК в начале митоза (см.) ядрышка исчезают (исключение составляют ядрышко некоторых простейших), а при восстановлении синтеза рРНК в телофазе митоза формируются вновь на участках хромосом (см.), называемых организаторами ядрышка. В клетках человека организаторы ядрышка локализованы в области вторичных перетяжек коротких плеч хромосом 13, 14, 15, 21 и 22. При активном синтезе белка клеткой организаторы ядрышка обычно редуплицируются, и количество их достигает нескольких сотен копий. В ооцитах животных (например, амфибий) такие копии могут отрываться от хромосом и формировать множественные краевые ядрышки яйцеклеток.

Организаторы ядрышка состоят из повторяющихся блоков транскрибируемых последовательностей ДНК, включающих гены 5,8S-PHK, 28S-РНК и 18S-pPHK, разделенные двумя некодирующими рРНК участками. Транскрибируемые последовательности ДНК чередуются с нет-ранскрибируемыми последовательностями (спейсерами). Синтез рРНК, или транскрипция (см.), осуществляется специальным ферментом - РНК-полимеразой I. Первоначально синтезируются гигантские молекулы 45S-PHK; в ходе созревания (процессинга) из этих молекул с помощью специальных ферментов образуются все три вида рРНК; этот процесс протекает в несколько этапов. Избыточные, не входящие в состав рРНК участки 45S-PHK распадаются в ядре, а зрелые рРНК транспортируются в цитоплазму, где молекулы 5,8S-рРНК и 28S-pPHK вместе с синтезированной в ядре вне ядрышка молекулой 5S-pPHK и дополнительными белками формируют большую единицу рибосомы, а молекула 18S-pPHK входит в состав ее малой субъединицы. Согласно современным представлениям рР НК и их предшественники на всех этапах процессинга присутствуют в ядре в виде комплексов с белками - рибонуклеопротеидов. Присоединение белков к молекуле 45 S-РНК происходит по мере ее синтеза, так что к моменту завершения синтеза молекула уже представляет собой рибонуклеопротеид.

Ультраструктура ядрышка отражает последовательные этапы синтеза рРНК на матрицах организаторов ядрышка. На электронограммах в ядрышках различают фибриллярный компонент (нуклеолонему), гранулярный компонент и аморфный матрикс (рис.). Нуклеолонема представляет собой нитчатую структуру толщиной 150- 200 нм; она состоит из гранул диаметром около 15 нм и рыхло расположенных фибрилл толщиной 4-8 нм. На срезах нуклеолонемы видны относительно светлые участки - так назывыаемые фибриллярные центры. Предполагают, что эти центры образованы нетранскрибируемыми областями ДНК организаторов ядрышка, находящимися в комплексе с аргенто-фильными белками. Фибриллярные центры окружены петлями транскрибируемых цепей ДНК с синтезирующимися на них рибонуклеопротеидами 45S-PHK. Видимо, последние и выявляются на электронограммах в виде фибрилл.

Гранулярный компонент ядрышка содержит гранулы рибонуклеопротеидов, представляющие собой различные продукты процессинга рРНК. Среди них иногда удается различить темные гранулы рибонуклеопротеидного предшественника 28S-pPHK (32S-pPHK) и более светлые зерна, содержащие зрелую 28S-pPHK. Аморфный матрикс ядрышка практически не отличается от ядерного сока (см. Ядро клетки).

Таким образом, ядрышко представляет собой динамичную, постоянно обновляющуюся структуру. Это зона ядра клетки, где синтезируются и созревают рРНК и откуда они транспортируются в цитоплазму.

Пути выхода рибонуклеопротеидов из ядрышка в цитоплазму изучены недостаточно. Считают, что они проходят через поросомы ядерной оболочки (см. Ядро клетки) или через участки ее локального разрушения. Связи ядрышка с оболочкой ядра в клетках разных типов осуществляются как в виде непосредственных контактов, так и с помощью каналов, образующихся вследствие инвагинации оболочки ядра. Через подобные связи происходит также обмен веществ между ядрышками и цитоплазмой.

При патологических процессах отмечают разнообразные изменения ядрышек. Так, при малигнизации клеток наблюдается увеличение числа и размеров ядрышек, при выраженных дистрофических процессах в клетке - так называемая сегрегация ядрышек. При сегрегации происходит перераспределение гранулярного и фибриллярного компонентов. При выраженной сегрегации ядрышек нуклеолонема может исчезать, а в гранулярном компоненте образуются темная и светлая зоны - так называемые шапочки, или кэпы. Эти структурные изменения отражают нарушения синтеза, процесса созревания и внутриядрышкового транспорта рРНК.

Библиогр.: Заварзин А. А. и Харазова А. Д. Основы общей цитологии, с. 183, Д., 1982; Ченцов Ю. С. Общая цитология, М., 1984; Ченцов Ю. С. и Поляков В. Ю, Ультраструктура клеточного ядра, с. 50, М., 1974; В о u t e i 1 1 e М. a. D и-puy-Go in А. М. 3-dimensional analysis of the interphase nucleus, Biol. Cell, v. 45, p. 455, 1982; Busch H. a. Smetana K. The nucleolus, N. Y.- L., 1970; Hadjiolov A. A. The nucleolus and ribosome biogenesis, Wien - N. Y., 1985, bibliogr.

При световой микроскопии ядрышки в клетках с высоким уровнем белкового синтеза имеют довольно большие размеры и их легко рассмотреть.

Если же ядрышки мелкие и в ядре преобладает гетерохроматин, то их поиск значительно затруднен. Ядрышко - это своеобразный центр ядра, его «штаб», где собираются рибосомы и, таким образом, контролируется степень последующих процессов трансляции белков в клетке.

В ядре может быть от одного до нескольких ядрышек, но если ядрышек одно или два, то они более крупные. Они могут иметь различные размеры, форму, плотность и область распределения в зависимости от функциональной активности клетки. Более крупные ядрышки характерны для дифференцированных клеток с высокой активностью синтеза белков. Малодифференцированные клетки обычно имеют несколько мелких ядрышек. Клетки, в которых активность белкового синтеза невелика, имеют мелкие ядрышки с высокой электронной плотностью и интенсивно окрашивающиеся основными красителями.

Основная функция ядрышка - синтез рРНК и субъединиц рибосом. При исследовании ультратонких срезов в электронном микроскопе видно, что ядрышки не гомогенные структуры, а имеют вид элекронно-плотного вещества, формирующего петли. Промежутки между петлями заполнены более светлым веществом. С помощью электронной микроскопии в ядрышке можно выявить несколько компонентов.

Фибриллярный компонент - это тонкофибриллярная структура, состоящая из тончайших нитей различной электронной плотности. Она образована участками слабо конденсированной ДНК, считывающимися с нее молекулами РНК и белками, осуществляющими транскрипцию. Фибриллярный компонент занимает центральные, небольшие по размерам участки вокруг ядрышковых организаторов. В фибриллярном компоненте ядрышка происходит транскрипция рРНК.

Гранулярный (зернистый) компонент - это образующиеся субъединицы рибосом.

При большом увеличении электронного микроскопа в гранулярном компоненте видно множество гранул высокой электронной плотности. Располагается между фибриллярными структурами и по периферии ядрышка.

Зону ядрышкового организатора иногда выявляют в центре фибриллярного компонента в виде светлого участка. Вокруг ядрышкового организатора в интерфазу образуется ядрышко. В период митоза зона ядрышкового организатора соответствует области вторичной перетяжки хромосомы.

Зона неактивной ДНК вокруг ядрышка отличается высокой степенью конденсации в виде околоядрышкового гетерохроматина. Предположительно эти зоны являются частями хромосом, которые образуют ядрышко.

Ядрышки значительно изменяются в различные стадии митоза. В конце профазы митоза они исчезают, а находящийся в ядрышках хроматин начинает конденсироваться. С конца профазы до середины телофазы митоза ядрышко содержит в себе только хроматин ядрышкового организатора, что указывает на его низкую активность. Затем этот хроматин деконденсируется и вокруг него формируется плотный фибриллярный материал, содержащий скопление рРНК. Рост ядрышка продолжается до конца телофазы за счет увеличения содержания фибриллярных структур, а затем вокруг них формируется гранулярный компонент. К концу телофазы строение ядрышка близко к таковому в интерфазном ядре, и проявляются признаки нарастающей синтетической активности с образованием новых рибосом.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Вконтакте

Одноклассники

Ядро клетки по своему строению относится к группе двухмембранных органоидов. Однако ядро настолько важно для жизнедеятельности эукариотической клетки, что обычно его рассматривают отдельно. Ядро клетки содержит хроматин (деспирализованные хромосомы), который отвечает за хранение и передачу наследственной информации.

В строении ядра клетки выделяют следующие ключевые структуры:

  • ядерная оболочка, состоящая из внешней и внутренней мембраны,
  • ядерный матрикс - всё, что заключено внутри клеточного ядра,
  • кариоплазма (ядерный сок) - жидкое содержимое, подобное по составу гиалоплазме,
  • ядрышко,
  • хроматин.

Кроме перечисленного в ядре содержатся различные вещества, субъединицы рибосом, РНК.

Строение наружной мембраны ядра клетки сходно с эндоплазматической сетью. Часто внешняя мембрана просто переходит в ЭПС (последняя от нее как бы ответвляется, является ее выростом). С внешней стороны на ядре располагаются рибосомы.

Внутренняя мембрана более прочная за счет выстилающей ее ламины. Кроме опорной функции к этой ядерной выстилке прикрепляется хроматин.

Пространство между двумя ядерными мембранами называется перинуклеарным.

Мембрана ядра клетки пронизана множеством пор, соединяющих цитоплазму с кариоплазмой. Однако по своему строению поры ядра клетки не просто отверстия в мембране. В них содержатся белковые структуры (поровый комплекс белков), отвечающий за избирательную транспортировку веществ и структур. Пассивно через пору могут проходить только малые молекулы (сахара, ионы).

Какую функцию выполняет ядро клетки?

Хроматин ядра клетки состоит их хроматиновых нитей. Каждая хроматиновая нить соответствует одной хромосоме, которая образуется из нее путем спирализации.

Чем сильнее раскручена хромосома (превращена в хроматиновую нить), тем больше она задействована в процессах синтеза на ней. Одна и та же хромосома может быть в одних участках спирализована, а в других деспирализована.

Каждая хроматиновая нить ядра клетки по строению является комплексом ДНК и различных белков, которые в том числе выполняют функцию скручивания и раскручивания хроматина.

Ядра клеток могут содержать одно и более ядрышек . Ядрышки состоят из рибонуклеопротеидов, из которых в дальнейшем образуются субъединицы рибосом. Здесь происходит синтез рРНК (рибосомальной РНК).

ЯДРЫШКО (nucleolus) - составная часть ядра клетки, представляющая собой оптически плотное, сильно преломляющее свет тельце. В современной цитологии (см.) ядрышко признается местом синтеза и накопления всех рибосомных РНК (рРНК), кроме 5S-PHK (см. Рибосомы).

Ядрышко впервые описано в 1838- 1839 годы М. Шлейденом в растительных и Т. Шванном - в животных клетках.

Число ядрышек, их размеры и форма варьируют в зависимости от вида клеток. Наиболее часто встречаются ядрышки сферической формы. Ядрышка способны сливаться друг с другом, поэтому в ядре могут присутствовать либо несколько мелких ядрышек, либо одно крупное, либо несколько ядрышек разной величины. В клетках с низким уровнем синтеза белка ядрышки невелики или не выявляются. Активизация синтеза белков сопряжена с увеличением общего объема ядрышек. Во многих случаях общий объем ядрышек также коррелирует с числом хромосомных наборов клетки (см. Хромосомный набор).

Ядрышко не имеет оболочки и окружено слоем конденсированного хроматина (см.) - так называемого околоядрышкового, или перинуклеолярного, гетерохроматина. С помощью цитохимических методов в ядрышках выявляют РНК и белки, кислые и основные. Белки ядрышка включают ферменты, участвующие в синтезе рибосомных РНК. При окраске препаратов ядрышка, как правило, прокрашиваются основным красителем. В яйцеклетках некоторых червей, моллюсков и членистоногих встречаются сложные ядрышки (амфинуклеолы), состоящие из двух частей, одна из которых окрашивается основным красителем, другая (белковое тельце) - кислым. При прекращении синтеза рРНК в начале митоза (см.) ядрышка исчезают (исключение составляют ядрышко некоторых простейших), а при восстановлении синтеза рРНК в телофазе митоза формируются вновь на участках хромосом (см.), называемых организаторами ядрышка. В клетках человека организаторы ядрышка локализованы в области вторичных перетяжек коротких плеч хромосом 13, 14, 15, 21 и 22. При активном синтезе белка клеткой организаторы ядрышка обычно редуплицируются, и количество их достигает нескольких сотен копий. В ооцитах животных (например, амфибий) такие копии могут отрываться от хромосом и формировать множественные краевые ядрышки яйцеклеток.

Организаторы ядрышка состоят из повторяющихся блоков транскрибируемых последовательностей ДНК, включающих гены 5,8S-PHK, 28S-РНК и 18S-pPHK, разделенные двумя некодирующими рРНК участками. Транскрибируемые последовательности ДНК чередуются с нет-ранскрибируемыми последовательностями (спейсерами). Синтез рРНК, или транскрипция (см.), осуществляется специальным ферментом - РНК-полимеразой I. Первоначально синтезируются гигантские молекулы 45S-PHK; в ходе созревания (процессинга) из этих молекул с помощью специальных ферментов образуются все три вида рРНК; этот процесс протекает в несколько этапов. Избыточные, не входящие в состав рРНК участки 45S-PHK распадаются в ядре, а зрелые рРНК транспортируются в цитоплазму, где молекулы 5,8S-рРНК и 28S-pPHK вместе с синтезированной в ядре вне ядрышка молекулой 5S-pPHK и дополнительными белками формируют большую единицу рибосомы, а молекула 18S-pPHK входит в состав ее малой субъединицы. Согласно современным представлениям рР НК и их предшественники на всех этапах процессинга присутствуют в ядре в виде комплексов с белками - рибонуклеопро-теидов. Присоединение белков к молекуле 45 S-РНК происходит по мере ее синтеза, так что к моменту завершения синтеза молекула уже представляет собой рибонуклео-протеид.

Рис. Электронограмма ядрышка клетки НЕр-2: 1- гранулярный компонент; 2- фибриллярный компонент (нуклеолонема); з- фибриллярный центр; 4- аморфный матрикс; X 70 ООО.

Ультраструктура ядрышка отражает последовательные этапы синтеза рРНК на матрицах организаторов ядрышка. На электронограммах в ядрышках различают фибриллярный компонент (нуклеолонему), гранулярный компонент и аморфный матрикс (рис.). Нуклеолонема представляет собой нитчатую структуру толщиной 150- 200 нм; она состоит из гранул диаметром около 15 нм и рыхло расположенных фибрилл толщиной 4-8 нм. На срезах нуклеолонемы видны относительно светлые участки - так назывыаемые фибриллярные центры. Предполагают, что эти центры образованы нетранскрибируемыми областями ДНК организаторов ядрышка, находящимися в комплексе с аргенто-фильными белками. Фибриллярные центры окружены петлями транскрибируемых цепей ДНК с синтезирующимися на них рибонуклеопротеидами 45S-PHK. Видимо, последние и выявляются на электронограммах в виде фибрилл.

Гранулярный компонент ядрышка содержит гранулы рибонуклеопротеидов, представляющие собой различные продукты процессинга рРНК. Среди них иногда удается различить темные гранулы рибонуклеопро-теидного предшественника 28S-pPHK (32S-pPHK) и более светлые зерна, содержащие зрелую 28S-pPHK. Аморфный матрикс ядрышка практически не отличается от ядерного сока (см. Ядро клетки).

Таким образом, ядрышко представляет собой динамичную, постоянно обновляющуюся структуру. Это зона ядра клетки, где синтезируются и созревают рРНК и откуда они транспортируются в цитоплазму.

Пути выхода рибонуклеопротеидов из ядрышка в цитоплазму изучены недостаточно. Считают, что они проходят через поросомы ядерной оболочки (см. Ядро клетки) или через участки ее локального разрушения. Связи ядрышка с оболочкой ядра в клетках разных типов осуществляются как в виде непосредственных контактов, так и с помощью каналов, образующихся вследствие инвагинации оболочки ядра. Через подобные связи происходит также обмен веществ между ядрышками и цитоплазмой.

При патологических процессах отмечают разнообразные изменения ядрышек. Так, при малигнизации клеток наблюдается увеличение числа и размеров ядрышек, при выраженных дистрофических процессах в клетке - так называемая сегрегация ядрышек. При сегрегации происходит перераспределение гранулярного и фибриллярного компонентов. При выраженной сегрегации ядрышек нуклеолонема может исчезать, а в гранулярном компоненте образуются темная и светлая зоны - так называемые шапочки, или кэпы. Эти структурные изменения отражают нарушения синтеза, процесса созревания и внутриядрышкового транспорта рРНК.

См. также Рибонуклеиновые кислоты.

Библиогр.: Заварзин А. А. и Харазова А. Д. Основы общей цитологии, с. 183, Д., 1982; Ченцов Ю. С. Общая цитология, М., 1984; Ченцов Ю. С. и Поляков В. Ю, Ультраструктура клеточного ядра, с. 50, М., 1974; В о u t e i 1 1 e М. a. D и-puy-Go in А. М. 3-dimensional analysis of the interphase nucleus, Biol. Cell, v. 45, p. 455, 1982; Busch H. a.

Ядрышко в клетке

Smetana K. The nucleolus, N. Y.- L., 1970; Hadjiolov A. A. The nucleolus and ribosome biogenesis, Wien - N. Y., 1985, bibliogr.

Я. E. Хесин.

Ядрышко клетки

Ядро обеспечивает важнейшие метаболические и генетические функции клетки. Большинство клеток содержит одно ядро, изредка встречаются многоядерные клетки (некоторые грибы, простейшие, водоросли, поперечно-полосатые мышечные волокна и др.). Лишенная ядра клетка быстро погибает. Однако некоторые клетки в зрелом (дифференцированном) состоянии утрачивают ядро. Такие клетки либо живут недолго и заменяются новыми (например, эритроциты), либо поддерживают свою жизнедеятельность за счет притока метаболитов из тесно примыкающих к ним клеток – "кормилец" (например, клетки флоэмы у растений). По форме ядро может быть шаровидным, овальным, лопастным, линзовидным и т.д. Размер, форма и структура ядер изменяются в зависимости от функционального состояния клеток, быстро реагируя на изменение внешних условий. Ядро обычно перемещается по клетке пассивно с током окружающей его цитоплазмы, но иногда оно способно самостоятельно передвигаться, совершая движения амебоидного типа.

Ядро – самая крупная органелла клетки, ее важнейший регулирующий центр. Как правило, клетка имеет одно ядро, но существуют клетки двухядерные и многоядерные. В некоторых организмах могут встречаться клетки, лишенные ядер. К таким безъядерным клеткам относятся, например, эритроциты млекопитающих, тромбоциты, клетки ситовидных трубок растений и некоторые другие типы клеток. Обычно безъядерными бывают высокоспециализированные клетки, утратившие ядра на ранних стадиях развития.

Ядро содержит ядрышко, а иногда и несколько ядрышек. Ядрышко – компактная структура в ядре интерфазных клеток.

Ядрышко – структура, составленная из расположенных рядом участков нескольких различных хромосом.

13. Строение ядра. Ядрышко строение и функции.

Эти участки представляют собой большие петли ДНК, содержащие гены рибосомальной РНК (рРНК). Такие петли называются ядрышковым организатором.
Ядрышко является центром образования рибосом, т.к. здесь осуществляется синтез рРНК и соединение этих молекул с белками, т.е. происходит формирование субъединиц рибосом, которые затем поступают в цитоплазму, где и завершается сборка рибосом.

первые ядрышки были обнаружены Фонтана в 1774 г. В живых клетках они выделяются на фоне диффузной организации хроматина из-за своей светопреломляемости. Последнее свойство связано с тем, что ядрышки являются наиболее плотными структурами в клетке. Они обнаруживаются практически во всех ядрах эукариотических клеток за редким исключением. Это говорит об обязательном присутствии этого компонента в клеточном ядре.

В клеточном цикле ядрышко присутствует в течение всей интерфазы, в профазе по мере компактизации хромосом во время митоза оно постепенно исчезает и отсутствует в мета- и анафазе, вновь появляется в середине телофазы, чтобы сохраняться вплоть до следующего митоза, или до гибели клетки.

Долгое время функциональное значение ядрышка было непонятно. Вплоть до 1950-х годов исследователи считали, что вещество ядрышка представляет собой своего рода запас, который используется и исчезает в момент деления ядра.

Еще в 1930-х годах рядом исследователей (МакКлинток, Хейтц, С.Г. Навашин) было показано, что возникновение ядрышек связано топографически с определенными зонами на особых, ядрышкообразующих хромосомах. Эти зоны были названы ядрышковыми организаторами, а сами ядрышки представлялись как структурное выражение хромосомной активности. Позднее, в 1940-х годах, когда было найдено, что ядрышки содержат РНК, стала понятна их «базофилия», сродство к основным (щелочным) красителям вследствие кислой природы РНК. По данным цитохимических и биохимических исследований, основным компонентом ядрышка является белок: на его долю приходится до 70-80% от сухой массы. Такое большое содержание белка и определяет высокую плотность ядрышек. Кроме белка в составе ядрышка обнаружены нуклеиновые кислоты: РНК (5-14%) и ДНК (2-12%).

Уже в 1950-х годах при изучении ультраструктуры ядрышек в их составе были выявлены гранулы, сходные по своим свойствам с цитоплазматическими гранулами рибонуклеопротеидной природы - с рибосомами. Следующим этапом в изучении ядрышка было открытие принципиального факта - «ядрышковый организатор» является вместилищем генов рибосомных РНК.

В ядрышке различают:

фибриллярный центр – слабоокрашенный компонент (ДНК, кодирующая РНК),

фибриллярный компонент, где протекают ранние стадии образования предшественников рРНК; состоит из тонких (5 нм) рибонуклеопотеиновых фибрилл и транскрипционно активных участков ДНК;

гранулярный компонент – содержит зрелые предшественники рибосомных СЕ, имеющих диаметр 15 нм.

Основные функции ядрышка – синтез рРНК (транскрипция и процессинг рРНК) и образование СЕ рибосом.

Транскрипция рРНК происходит в хромосомах 13, 14, 15, 21 и 22. Петли ДНК этих хромосом, содержащие соответствующие гены, формируют ядрышковый организатор, получивший название в связи с тем, что восстановление ядрышка в фазу G1 клеточного цикла начинается с этой структуры.

Как правило, эукариотическая клетка имеет одно ядро , но встречаются двуядерные (инфузории) и многоядерные клетки (опалина). Некоторые высоко­специализи­рованные клетки вторично утрачивают ядро (эритроциты млекопитающих, ситовидные трубки покрытосеменных).

Форма ядра - сферическая, эллипсовидная, реже лопастная, бобовидная и др. Диаметр ядра - обычно от 3 до 10 мкм.

Строение ядра:
1 - наруж­ная мембрана; 2 - внут­ренняя мемб­рана; 3 - поры; 4 - ядрышко; 5 - гетеро­хроматин; 6 - эухро­матин.

Ядро отграничено от цитоплазмы двумя мембранами (каждая из них имеет типичное строение). Между мембранами - узкая щель, заполненная полужидким веществом. В некоторых местах мембраны сливаются друг с другом, образуя поры (3), через которые происходит обмен веществ между ядром и цитоплазмой. Наружная ядерная (1) мембрана со стороны, обращенной в цитоплазму, покрыта рибосомами, придающими ей шероховатость, внутренняя (2) мембрана гладкая. Ядерные мембраны являются частью мембранной системы клетки: выросты наружной ядерной мембраны соединяются с каналами эндоплазматической сети, образуя единую систему сообщающихся каналов.

Кариоплазма (ядерный сок, нуклеоплазма) - внутреннее содержимое ядра, в котором располагаются хроматин и одно или несколько ядрышек. В состав ядерного сока входят различные белки (в том числе ферменты ядра), свободные нуклеотиды.

Ядрышко (4) представляет собой округлое плотное тельце, погруженное в ядерный сок. Количество ядрышек зависит от функционального состояния ядра и варьирует от 1 до 7 и более. Ядрышки обнаруживаются только в неделящихся ядрах, во время митоза они исчезают. Ядрышко образуется на определенных участках хромосом, несущих информацию о структуре рРНК. Такие участки называются ядрышковым организатором и содержат многочисленные копии генов, кодирующих рРНК. Из рРНК и белков, поступающих из цитоплазмы, формируются субъединицы рибосом. Таким образом, ядрышко представляет собой скопление рРНК и рибосомальных субъединиц на разных этапах их формирования.

Хроматин - внутренние нуклеопротеидные структуры ядра, окрашивающиеся некоторыми красителями и отличающиеся по форме от ядрышка. Хроматин имеет вид глыбок, гранул и нитей. Химический состав хроматина: 1) ДНК (30–45%), 2) гистоновые белки (30–50%), 3) негистоновые белки (4–33%), следовательно, хроматин является дезоксирибонуклеопротеидным комплексом (ДНП). В зависимости от функционального состояния хроматина различают: гетерохроматин (5) и эухроматин (6). Эухроматин - генетически активные, гетерохроматин - генетически неактивные участки хроматина. Эухроматин при световой микроскопии не различим, слабо окрашивается и представляет собой деконденсированные (деспирализованные, раскрученные) участки хроматина. Гетерохроматин под световым микроскопом имеет вид глыбок или гранул, интенсивно окрашивается и представляет собой конденсированные (спирализованные, уплотненные) участки хроматина. Хроматин - форма существования генетического материала в интерфазных клетках. Во время деления клетки (митоз, мейоз) хроматин преобразуется в хромосомы.

Функции ядра: 1) хранение наследственной информации и передача ее дочерним клеткам в процессе деления, 2) регуляция жизнедеятельности клетки путем регуляции синтеза различных белков, 3) место образования субъединиц рибосом.

Яндекс.ДиректВсе объявления

Хромосомы

Хромосомы - это цитологические палочковидные структуры, представляющие собой конденсированный хроматин и появляющиеся в клетке во время митоза или мейоза. Хромосомы и хроматин - различные формы пространственной организации дезоксирибонуклеопротеидного комплекса, соответствующие разным фазам жизненного цикла клетки. Химический состав хромосом такой же, как и хроматина: 1) ДНК (30–45%), 2) гистоновые белки (30–50%), 3) негистоновые белки (4–33%).

Основу хромосомы составляет одна непрерывная двухцепочечная молекула ДНК; длина ДНК одной хромосомы может достигать нескольких сантиметров. Понятно, что молекула такой длины не может располагаться в клетке в вытянутом виде, а подвергается укладке, приобретая определенную трехмерную структуру, или конформацию. Можно выделить следующие уровни пространственной укладки ДНК и ДНП: 1) нуклеосомный (накручивание ДНК на белковые глобулы), 2) нуклеомерный, 3) хромомерный, 4) хромонемный, 5) хромосомный.

В процессе преобразования хроматина в хромосомы ДНП образует не только спирали и суперспирали, но еще петли и суперпетли. Поэтому процесс формирования хромосом, который происходит в профазу митоза или профазу 1 мейоза, лучше называть не спирализацией, а конденсацией хромосом.

Хромосомы: 1 - метацентрическая; 2 - субметацентрическая; 3, 4 - акроцентрические. Строение хромосомы: 5 - центромера; 6 - вторичная перетяжка; 7 - спутник; 8 - хроматиды; 9 - теломеры.

Метафазная хромосома (хромосомы изучаются в метафазу митоза) состоит из двух хроматид (8). Любая хромосома имеет первичную перетяжку (центромеру) (5), которая делит хромосому на плечи. Некоторые хромосомы имеют вторичную перетяжку (6) и спутник (7). Спутник - участок короткого плеча, отделяемый вторичной перетяжкой. Хромосомы, имеющие спутник, называются спутничными (3). Концы хромосом называются теломерами (9). В зависимости от положения центромеры выделяют: а) метацентрические (равноплечие) (1), б) субметацентрические (умеренно неравноплечие) (2), в) акроцентрические (резко неравноплечие) хромосомы (3, 4).

Соматические клетки содержат диплоидный (двойной - 2n) набор хромосом, половые клетки - гаплоидный (одинарный - n). Диплоидный набор аскариды равен 2, дрозофилы - 8, шимпанзе - 48, речного рака - 196. Хромосомы диплоидного набора разбиваются на пары; хромосомы одной пары имеют одинаковое строение, размеры, набор генов и называются гомологичными .

Кариотип - совокупность сведений о числе, размерах и строении метафазных хромосом. Идиограмма - графическое изображение кариотипа. У представителей разных видов кариотипы разные, одного вида - одинаковые. Аутосомы - хромосомы, одинаковые для мужского и женского кариотипов. Половые хромосомы - хромосомы, по которым мужской кариотип отличается от женского.

Хромосомный набор человека (2n = 46, n = 23) содержит 22 пары аутосом и 1 пару половых хромосом. Аутосомы распределены по группам и пронумерованы:

Половые хромосомы не относятся ни к одной из групп и не имеют номера. Половые хромосомы женщины - ХХ, мужчины - ХУ. Х-хромосома - средняя субметацентрическая, У-хромосома - мелкая акроцентрическая.

В области вторичных перетяжек хромосом групп D и G находятся копии генов, несущих информацию о строении рРНК, поэтому хромосомы групп D и G называются ядрышкообразующими .

Функции хромосом: 1) хранение наследственной информации, 2) передача генетического материала от материнской клетки к дочерним.

Лекция №9.
Строение прокариотической клетки. Вирусы

К прокариотам относятся архебактерии, бактерии и синезеленые водоросли. Прокариоты - одноклеточные организмы, у которых отсутствуют структурно оформленное ядро, мембранные органоиды и митоз.